素环上具有b-广义导数的Engel条件

IF 0.9 4区 数学 Q1 Mathematics
Mohammad Salahuddin Khan, A. Khan
{"title":"素环上具有b-广义导数的Engel条件","authors":"Mohammad Salahuddin Khan, A. Khan","doi":"10.18514/mmn.2023.4001","DOIUrl":null,"url":null,"abstract":". Let R be a prime ring, I be a nonzero ideal of R , Q be its maximal right ring of quotients and C be its extended centroid. The aim of this paper is to show that if R admits a nonzero b -generalized derivation F such that [ F ( x m ) x n + x n F ( x m ) , x r ] k = 0 for all x ∈ I , where m , n , r , k are fixed positive integers, then there exists λ ∈ C such that F ( x ) = λ x unless R ∼ = M 2 ( GF ( 2 )) , the 2 × 2 matrix ring over the Galois field GF ( 2 ) of two elements.","PeriodicalId":49806,"journal":{"name":"Miskolc Mathematical Notes","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Engel condition with b-generalized derivations in prime rings\",\"authors\":\"Mohammad Salahuddin Khan, A. Khan\",\"doi\":\"10.18514/mmn.2023.4001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Let R be a prime ring, I be a nonzero ideal of R , Q be its maximal right ring of quotients and C be its extended centroid. The aim of this paper is to show that if R admits a nonzero b -generalized derivation F such that [ F ( x m ) x n + x n F ( x m ) , x r ] k = 0 for all x ∈ I , where m , n , r , k are fixed positive integers, then there exists λ ∈ C such that F ( x ) = λ x unless R ∼ = M 2 ( GF ( 2 )) , the 2 × 2 matrix ring over the Galois field GF ( 2 ) of two elements.\",\"PeriodicalId\":49806,\"journal\":{\"name\":\"Miskolc Mathematical Notes\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Miskolc Mathematical Notes\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18514/mmn.2023.4001\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Miskolc Mathematical Notes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18514/mmn.2023.4001","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

. 设R是一个素环,I是R的一个非零理想,Q是它的最大商环,C是它的扩展质心。本文的目的是说明如果R承认非零b推导广义F这样[F (x) x n + x n F (x), x R] k = 0 x∈,m, n, R, k是固定的正整数,然后存在λ∈C, F (x) =λx除非R∼= m 2 (GF(2)), 2×2矩阵环的伽罗瓦域GF(2)的两个元素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Engel condition with b-generalized derivations in prime rings
. Let R be a prime ring, I be a nonzero ideal of R , Q be its maximal right ring of quotients and C be its extended centroid. The aim of this paper is to show that if R admits a nonzero b -generalized derivation F such that [ F ( x m ) x n + x n F ( x m ) , x r ] k = 0 for all x ∈ I , where m , n , r , k are fixed positive integers, then there exists λ ∈ C such that F ( x ) = λ x unless R ∼ = M 2 ( GF ( 2 )) , the 2 × 2 matrix ring over the Galois field GF ( 2 ) of two elements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Miskolc Mathematical Notes
Miskolc Mathematical Notes Mathematics-Algebra and Number Theory
CiteScore
2.00
自引率
0.00%
发文量
9
期刊介绍: Miskolc Mathematical Notes, HU ISSN 1787-2405 (printed version), HU ISSN 1787-2413 (electronic version), is a peer-reviewed international mathematical journal aiming at the dissemination of results in many fields of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信