{"title":"强⊕−g−自由基补充模块","authors":"H. Özdemir, C. Nebiyev","doi":"10.18514/mmn.2023.4029","DOIUrl":null,"url":null,"abstract":". In this work, strongly ⊕ − g − radical supplemented modules are defined and some properties of these modules are investigated. Every ring has unity and every module is unital left module in this work. It is proved that every direct summand of a strongly ⊕− g − radical supplemented module is strongly ⊕− g − radical supplemented. Let f : M −→ N be an R − module epimorphism and Ker ( f ) be a direct summand of M . If M is strongly ⊕− g − radical supplemented, then N is also strongly ⊕− g − radical supplemented. Let M be a strongly ⊕− g − radical supplemented R − module and K ≤ M . If V is a g-radical supplement submodule in M for every g-radical supplement submodule V / K in M / K , then M / K is strongly ⊕− g − radical supplemented.","PeriodicalId":49806,"journal":{"name":"Miskolc Mathematical Notes","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strongly ⊕−g−radical supplemented modules\",\"authors\":\"H. Özdemir, C. Nebiyev\",\"doi\":\"10.18514/mmn.2023.4029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this work, strongly ⊕ − g − radical supplemented modules are defined and some properties of these modules are investigated. Every ring has unity and every module is unital left module in this work. It is proved that every direct summand of a strongly ⊕− g − radical supplemented module is strongly ⊕− g − radical supplemented. Let f : M −→ N be an R − module epimorphism and Ker ( f ) be a direct summand of M . If M is strongly ⊕− g − radical supplemented, then N is also strongly ⊕− g − radical supplemented. Let M be a strongly ⊕− g − radical supplemented R − module and K ≤ M . If V is a g-radical supplement submodule in M for every g-radical supplement submodule V / K in M / K , then M / K is strongly ⊕− g − radical supplemented.\",\"PeriodicalId\":49806,\"journal\":{\"name\":\"Miskolc Mathematical Notes\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Miskolc Mathematical Notes\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18514/mmn.2023.4029\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Miskolc Mathematical Notes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18514/mmn.2023.4029","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
. 本文定义了强⊕−g−自由基补充模,并研究了这些模的一些性质。在这个作品中,每个环都有统一,每个模都是统一的左模。证明了强⊕−g−根补充模的每一个直接和都是强⊕−g−根补充模。设f: M−→N是R−模的上模,且Ker (f)是M的直接和。如果M是强⊕- g -自由基的补充,则N也是强⊕- g -自由基的补充。设M为强⊕−g−自由基补充R−模,且K≤M。若M / K中的每一个g-自由基补充子模V / K都是M中的一个g-自由基补充子模,则M / K是强⊕- g-自由基补充。
. In this work, strongly ⊕ − g − radical supplemented modules are defined and some properties of these modules are investigated. Every ring has unity and every module is unital left module in this work. It is proved that every direct summand of a strongly ⊕− g − radical supplemented module is strongly ⊕− g − radical supplemented. Let f : M −→ N be an R − module epimorphism and Ker ( f ) be a direct summand of M . If M is strongly ⊕− g − radical supplemented, then N is also strongly ⊕− g − radical supplemented. Let M be a strongly ⊕− g − radical supplemented R − module and K ≤ M . If V is a g-radical supplement submodule in M for every g-radical supplement submodule V / K in M / K , then M / K is strongly ⊕− g − radical supplemented.
期刊介绍:
Miskolc Mathematical Notes, HU ISSN 1787-2405 (printed version), HU ISSN 1787-2413 (electronic version), is a peer-reviewed international mathematical journal aiming at the dissemination of results in many fields of pure and applied mathematics.