乘法处理效果的双中双估计量

Q3 Mathematics
Emanuele Ciani, Paul Fisher
{"title":"乘法处理效果的双中双估计量","authors":"Emanuele Ciani, Paul Fisher","doi":"10.2139/ssrn.2566252","DOIUrl":null,"url":null,"abstract":"Abstract We consider a difference-in-differences setting with a continuous outcome. The standard practice is to take its logarithm and then interpret the results as an approximation of the multiplicative treatment effect on the original outcome. We argue that a researcher should rather focus on the non-transformed outcome when discussing causal inference. The first step should be to decide whether the time trend is more likely to hold in multiplicative or level form. If the former, it is preferable to estimate an exponential model by Poisson Pseudo Maximum Likelihood, which does not require statistical independence of the error term. Running OLS on the log-linearised model might instead lead to confounding distributional and mean changes. We illustrate the argument with a simulation exercise.","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2139/ssrn.2566252","citationCount":"210","resultStr":"{\"title\":\"Dif-in-Dif Estimators of Multiplicative Treatment Effects\",\"authors\":\"Emanuele Ciani, Paul Fisher\",\"doi\":\"10.2139/ssrn.2566252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider a difference-in-differences setting with a continuous outcome. The standard practice is to take its logarithm and then interpret the results as an approximation of the multiplicative treatment effect on the original outcome. We argue that a researcher should rather focus on the non-transformed outcome when discussing causal inference. The first step should be to decide whether the time trend is more likely to hold in multiplicative or level form. If the former, it is preferable to estimate an exponential model by Poisson Pseudo Maximum Likelihood, which does not require statistical independence of the error term. Running OLS on the log-linearised model might instead lead to confounding distributional and mean changes. We illustrate the argument with a simulation exercise.\",\"PeriodicalId\":36727,\"journal\":{\"name\":\"Journal of Econometric Methods\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2139/ssrn.2566252\",\"citationCount\":\"210\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometric Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2566252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2566252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 210

摘要

我们考虑一个具有连续结果的差中差设置。标准做法是取其对数,然后将结果解释为乘法处理对原始结果的近似值。我们认为,在讨论因果推理时,研究人员应该更关注非转化的结果。第一步应该是决定时间趋势是更有可能保持在乘法形式还是水平形式。如果是前者,则最好使用泊松伪极大似然估计指数模型,该方法不需要误差项的统计独立性。在对数线性化模型上运行OLS可能会导致混淆分布和平均值的变化。我们用一个模拟练习来说明这个论点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dif-in-Dif Estimators of Multiplicative Treatment Effects
Abstract We consider a difference-in-differences setting with a continuous outcome. The standard practice is to take its logarithm and then interpret the results as an approximation of the multiplicative treatment effect on the original outcome. We argue that a researcher should rather focus on the non-transformed outcome when discussing causal inference. The first step should be to decide whether the time trend is more likely to hold in multiplicative or level form. If the former, it is preferable to estimate an exponential model by Poisson Pseudo Maximum Likelihood, which does not require statistical independence of the error term. Running OLS on the log-linearised model might instead lead to confounding distributional and mean changes. We illustrate the argument with a simulation exercise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Econometric Methods
Journal of Econometric Methods Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.20
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信