⊕-g补充模的一些性质

IF 0.9 4区 数学 Q1 Mathematics
C. Nebiyev, Hasan Hüseyin Ökten
{"title":"⊕-g补充模的一些性质","authors":"C. Nebiyev, Hasan Hüseyin Ökten","doi":"10.18514/mmn.2023.3896","DOIUrl":null,"url":null,"abstract":". In this work ⊕− g − supplemented modules are defined and some properties of these modules are investigated. It is proved that the finite direct sum of ⊕− g − supplemented modules is also ⊕ − g − supplemented. Let M be a distributive and ⊕ − g − supplemented R − module. Then every factor module and homomorphic image of M are ⊕− g − supplemented. Let M be a ⊕ − g − supplemented R − module with SSP property. Then every direct summand of M is ⊕− g − supplemented.","PeriodicalId":49806,"journal":{"name":"Miskolc Mathematical Notes","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Some Properties of ⊕-g-Supplemented Modules\",\"authors\":\"C. Nebiyev, Hasan Hüseyin Ökten\",\"doi\":\"10.18514/mmn.2023.3896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this work ⊕− g − supplemented modules are defined and some properties of these modules are investigated. It is proved that the finite direct sum of ⊕− g − supplemented modules is also ⊕ − g − supplemented. Let M be a distributive and ⊕ − g − supplemented R − module. Then every factor module and homomorphic image of M are ⊕− g − supplemented. Let M be a ⊕ − g − supplemented R − module with SSP property. Then every direct summand of M is ⊕− g − supplemented.\",\"PeriodicalId\":49806,\"journal\":{\"name\":\"Miskolc Mathematical Notes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Miskolc Mathematical Notes\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18514/mmn.2023.3896\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Miskolc Mathematical Notes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18514/mmn.2023.3896","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

. 本文定义了⊕−g−补充模,并研究了这些模的一些性质。证明了⊕−g−补模的有限直和也是⊕−g−补模。设M是一个分配且⊕−g−补充的R−模。然后M的每个因子模和同态像都被⊕−g−补充。设M是一个具有SSP性质的⊕−g−补R−模。那么M的每一个直接和都是⊕−g−补充的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Properties of ⊕-g-Supplemented Modules
. In this work ⊕− g − supplemented modules are defined and some properties of these modules are investigated. It is proved that the finite direct sum of ⊕− g − supplemented modules is also ⊕ − g − supplemented. Let M be a distributive and ⊕ − g − supplemented R − module. Then every factor module and homomorphic image of M are ⊕− g − supplemented. Let M be a ⊕ − g − supplemented R − module with SSP property. Then every direct summand of M is ⊕− g − supplemented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Miskolc Mathematical Notes
Miskolc Mathematical Notes Mathematics-Algebra and Number Theory
CiteScore
2.00
自引率
0.00%
发文量
9
期刊介绍: Miskolc Mathematical Notes, HU ISSN 1787-2405 (printed version), HU ISSN 1787-2413 (electronic version), is a peer-reviewed international mathematical journal aiming at the dissemination of results in many fields of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信