{"title":"无限秩的固有子群具有有限多环共轭类的群","authors":"Mounia Bouchelaghem, N. Trabelsi","doi":"10.22108/IJGT.2016.8776","DOIUrl":null,"url":null,"abstract":"A group $G$ is said to be a $(PF)C$-group or to have polycyclic-by-finite conjugacy classes, if $G/C_{G}(x^{G})$ is a polycyclic-by-finite group for all $xin G$. This is a generalization of the familiar property of being an $FC$-group. De Falco et al. (respectively, de Giovanni and Trombetti) studied groups whose proper subgroups of infinite rank have finite (respectively, polycyclic) conjugacy classes. Here we consider groups whose proper subgroups of infinite rank are $(PF)C$-groups and we prove that if $G$ is a group of infinite rank having a non-trivial finite or abelian factor group and if all proper subgroups of $G$ of infinite rank are $(PF)C$-groups, then so is $G$. We prove also that if $G$ is a locally soluble-by-finite group of infinite rank which has no simple homomorphic images of infinite rank and whose proper subgroups of infinite rank are $(PF)C$-groups, then so are all proper subgroups of $G$.","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":"5 1","pages":"61-67"},"PeriodicalIF":0.7000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Groups whose proper subgroups of infinite rank have polycyclic-by-finite conjugacy classes\",\"authors\":\"Mounia Bouchelaghem, N. Trabelsi\",\"doi\":\"10.22108/IJGT.2016.8776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A group $G$ is said to be a $(PF)C$-group or to have polycyclic-by-finite conjugacy classes, if $G/C_{G}(x^{G})$ is a polycyclic-by-finite group for all $xin G$. This is a generalization of the familiar property of being an $FC$-group. De Falco et al. (respectively, de Giovanni and Trombetti) studied groups whose proper subgroups of infinite rank have finite (respectively, polycyclic) conjugacy classes. Here we consider groups whose proper subgroups of infinite rank are $(PF)C$-groups and we prove that if $G$ is a group of infinite rank having a non-trivial finite or abelian factor group and if all proper subgroups of $G$ of infinite rank are $(PF)C$-groups, then so is $G$. We prove also that if $G$ is a locally soluble-by-finite group of infinite rank which has no simple homomorphic images of infinite rank and whose proper subgroups of infinite rank are $(PF)C$-groups, then so are all proper subgroups of $G$.\",\"PeriodicalId\":43007,\"journal\":{\"name\":\"International Journal of Group Theory\",\"volume\":\"5 1\",\"pages\":\"61-67\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/IJGT.2016.8776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2016.8776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Groups whose proper subgroups of infinite rank have polycyclic-by-finite conjugacy classes
A group $G$ is said to be a $(PF)C$-group or to have polycyclic-by-finite conjugacy classes, if $G/C_{G}(x^{G})$ is a polycyclic-by-finite group for all $xin G$. This is a generalization of the familiar property of being an $FC$-group. De Falco et al. (respectively, de Giovanni and Trombetti) studied groups whose proper subgroups of infinite rank have finite (respectively, polycyclic) conjugacy classes. Here we consider groups whose proper subgroups of infinite rank are $(PF)C$-groups and we prove that if $G$ is a group of infinite rank having a non-trivial finite or abelian factor group and if all proper subgroups of $G$ of infinite rank are $(PF)C$-groups, then so is $G$. We prove also that if $G$ is a locally soluble-by-finite group of infinite rank which has no simple homomorphic images of infinite rank and whose proper subgroups of infinite rank are $(PF)C$-groups, then so are all proper subgroups of $G$.
期刊介绍:
International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.