n-fine环

IF 0.9 4区 数学 Q1 Mathematics
Nabil Zeidi
{"title":"n-fine环","authors":"Nabil Zeidi","doi":"10.18514/mmn.2023.3724","DOIUrl":null,"url":null,"abstract":". A ring R is said to be n -fine if every nonzero element in R can be written as a sum of a nilpotent and n units in R. The class of these rings contains fine rings and n -good rings in which each element is a sum of n units. Fundamental properties of such rings are obtained. One of the main results of this paper is that the m × m matrix ring M m ( R ) over any arbitrary ring R is 2-fine. Furthermore, the m × m matrix ring M m ( R ) over a n -fine ring R is n -fine.","PeriodicalId":49806,"journal":{"name":"Miskolc Mathematical Notes","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"n-fine rings\",\"authors\":\"Nabil Zeidi\",\"doi\":\"10.18514/mmn.2023.3724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". A ring R is said to be n -fine if every nonzero element in R can be written as a sum of a nilpotent and n units in R. The class of these rings contains fine rings and n -good rings in which each element is a sum of n units. Fundamental properties of such rings are obtained. One of the main results of this paper is that the m × m matrix ring M m ( R ) over any arbitrary ring R is 2-fine. Furthermore, the m × m matrix ring M m ( R ) over a n -fine ring R is n -fine.\",\"PeriodicalId\":49806,\"journal\":{\"name\":\"Miskolc Mathematical Notes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Miskolc Mathematical Notes\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18514/mmn.2023.3724\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Miskolc Mathematical Notes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18514/mmn.2023.3724","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

. 是说to be A环R n -fine,如果每nonzero元素在R可以成为美国就读(sum of A nilpotent and n单位在R级》。这些戒指containsfine每响与n -响》,这是元素A sum of n单位。《指环》的基本性质受到质疑。玩results》这篇文章的一个那是mm×m矩阵环(R)通过任何arbitrary环R是2 -fine)。Furthermore,《mm×m矩阵环(R)通过a n -fi东北环R是n -fine。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
n-fine rings
. A ring R is said to be n -fine if every nonzero element in R can be written as a sum of a nilpotent and n units in R. The class of these rings contains fine rings and n -good rings in which each element is a sum of n units. Fundamental properties of such rings are obtained. One of the main results of this paper is that the m × m matrix ring M m ( R ) over any arbitrary ring R is 2-fine. Furthermore, the m × m matrix ring M m ( R ) over a n -fine ring R is n -fine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Miskolc Mathematical Notes
Miskolc Mathematical Notes Mathematics-Algebra and Number Theory
CiteScore
2.00
自引率
0.00%
发文量
9
期刊介绍: Miskolc Mathematical Notes, HU ISSN 1787-2405 (printed version), HU ISSN 1787-2413 (electronic version), is a peer-reviewed international mathematical journal aiming at the dissemination of results in many fields of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信