离散时间SIR流行病模型的全局稳定性和分岔分析

IF 0.9 4区 数学 Q1 Mathematics
Ö. Gümüs, Qianqian Cui, G. Selvam, Abraham Vianny
{"title":"离散时间SIR流行病模型的全局稳定性和分岔分析","authors":"Ö. Gümüs, Qianqian Cui, G. Selvam, Abraham Vianny","doi":"10.18514/mmn.2022.3417","DOIUrl":null,"url":null,"abstract":". In this paper, we study the complex dynamical behaviors of a discrete-time SIR epidemic model. Analysis of the model demonstrates that the Diseases Free Equilibrium (DFE) point is globally asymptotically stable if the basic reproduction number is less than one while the Endemic Equilibrium (EE) point is globally asymptotically stable if the basic reproduction number is greater than one. The results are further substantiated visually with numerical simulations. Furthermore, numerical results demonstrate that the discrete model has more complex dynamical behaviors including multiple periodic orbits, quasi-periodic orbits and chaotic behaviors. The maximum Lyapunov exponent and chaotic attractors also confirm the chaotic dynamical behaviors of the model.","PeriodicalId":49806,"journal":{"name":"Miskolc Mathematical Notes","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Global stability and bifurcation analysis of a discrete time SIR epidemic model\",\"authors\":\"Ö. Gümüs, Qianqian Cui, G. Selvam, Abraham Vianny\",\"doi\":\"10.18514/mmn.2022.3417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we study the complex dynamical behaviors of a discrete-time SIR epidemic model. Analysis of the model demonstrates that the Diseases Free Equilibrium (DFE) point is globally asymptotically stable if the basic reproduction number is less than one while the Endemic Equilibrium (EE) point is globally asymptotically stable if the basic reproduction number is greater than one. The results are further substantiated visually with numerical simulations. Furthermore, numerical results demonstrate that the discrete model has more complex dynamical behaviors including multiple periodic orbits, quasi-periodic orbits and chaotic behaviors. The maximum Lyapunov exponent and chaotic attractors also confirm the chaotic dynamical behaviors of the model.\",\"PeriodicalId\":49806,\"journal\":{\"name\":\"Miskolc Mathematical Notes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Miskolc Mathematical Notes\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18514/mmn.2022.3417\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Miskolc Mathematical Notes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18514/mmn.2022.3417","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

. 本文研究了离散时间SIR流行病模型的复杂动力学行为。模型分析表明,当基本繁殖数小于1时,无病平衡点(DFE)点是全局渐近稳定的;当基本繁殖数大于1时,地方病平衡点(EE)点是全局渐近稳定的。数值模拟结果进一步印证了这一结论。数值结果表明,离散模型具有更复杂的动力学行为,包括多周期轨道、准周期轨道和混沌行为。最大Lyapunov指数和混沌吸引子也证实了模型的混沌动力学行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global stability and bifurcation analysis of a discrete time SIR epidemic model
. In this paper, we study the complex dynamical behaviors of a discrete-time SIR epidemic model. Analysis of the model demonstrates that the Diseases Free Equilibrium (DFE) point is globally asymptotically stable if the basic reproduction number is less than one while the Endemic Equilibrium (EE) point is globally asymptotically stable if the basic reproduction number is greater than one. The results are further substantiated visually with numerical simulations. Furthermore, numerical results demonstrate that the discrete model has more complex dynamical behaviors including multiple periodic orbits, quasi-periodic orbits and chaotic behaviors. The maximum Lyapunov exponent and chaotic attractors also confirm the chaotic dynamical behaviors of the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Miskolc Mathematical Notes
Miskolc Mathematical Notes Mathematics-Algebra and Number Theory
CiteScore
2.00
自引率
0.00%
发文量
9
期刊介绍: Miskolc Mathematical Notes, HU ISSN 1787-2405 (printed version), HU ISSN 1787-2413 (electronic version), is a peer-reviewed international mathematical journal aiming at the dissemination of results in many fields of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信