红细胞衰老、密度和可变形性的生理和病理生理意义:重要但不被注意的三位一体

Q4 Engineering
T. Maruyama, Mitsuhiro Fukata, T. Fujino
{"title":"红细胞衰老、密度和可变形性的生理和病理生理意义:重要但不被注意的三位一体","authors":"T. Maruyama, Mitsuhiro Fukata, T. Fujino","doi":"10.17106/jbr.34.61","DOIUrl":null,"url":null,"abstract":"Erythrocytes are the most abundant cells and acting as carrier, deliverer and sensor of oxygen. Therefore, human erythrocyte behavior is a fundamental health indicator. Lifespan of circulating erythrocytes is about 120 days, and hence erythrocyte population shows distribution of aging. The physicochemical property of hemoglobin (Hb) influences the density and the deformability of erythrocytes. Senescent erythrocytes are dense, shrunk, less deformable and finally removed from circulation by several mechanisms such as phagocytosis and eryptosis. Earlier removal leads to the short lifespan of less deformable erythrocytes. Herein, anemic and cardiometabolic diseases are presented in order to consider the relationship between the agedependent erythrocyte density and deformability. The main cause of impaired deformability in sickle cell disease is the presence of dense cells characterized by cellular dehydration and polymerization of sickle Hb, that in hereditary hemolytic diseases is cellular geometry, and that in iron deficiency anemia is an increased susceptibility of lighter erythrocytes to the oxidative stress. Diabetic erythrocytes show seemingly normal density and reduced deformability under the enhanced oxidative stress. This article addresses that distribution profiles of both erythrocyte density and deformability are important for better understanding of the encapsulated Hb interacting membrane of erythrocytes showing individual aging.","PeriodicalId":39272,"journal":{"name":"Journal of Biorheology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Physiological and pathophysiological significance of erythrocyte senescence, density and deformability: Important but unnoticed trinity\",\"authors\":\"T. Maruyama, Mitsuhiro Fukata, T. Fujino\",\"doi\":\"10.17106/jbr.34.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Erythrocytes are the most abundant cells and acting as carrier, deliverer and sensor of oxygen. Therefore, human erythrocyte behavior is a fundamental health indicator. Lifespan of circulating erythrocytes is about 120 days, and hence erythrocyte population shows distribution of aging. The physicochemical property of hemoglobin (Hb) influences the density and the deformability of erythrocytes. Senescent erythrocytes are dense, shrunk, less deformable and finally removed from circulation by several mechanisms such as phagocytosis and eryptosis. Earlier removal leads to the short lifespan of less deformable erythrocytes. Herein, anemic and cardiometabolic diseases are presented in order to consider the relationship between the agedependent erythrocyte density and deformability. The main cause of impaired deformability in sickle cell disease is the presence of dense cells characterized by cellular dehydration and polymerization of sickle Hb, that in hereditary hemolytic diseases is cellular geometry, and that in iron deficiency anemia is an increased susceptibility of lighter erythrocytes to the oxidative stress. Diabetic erythrocytes show seemingly normal density and reduced deformability under the enhanced oxidative stress. This article addresses that distribution profiles of both erythrocyte density and deformability are important for better understanding of the encapsulated Hb interacting membrane of erythrocytes showing individual aging.\",\"PeriodicalId\":39272,\"journal\":{\"name\":\"Journal of Biorheology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biorheology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17106/jbr.34.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biorheology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17106/jbr.34.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 4

摘要

红细胞是最丰富的细胞,是氧气的载体、传递者和传感器。因此,红细胞行为是一个基本的健康指标。循环红细胞的寿命约为120天,因此红细胞群呈现老化分布。血红蛋白(Hb)的理化性质影响红细胞的密度和变形能力。衰老红细胞致密、收缩、不易变形,最终通过吞噬和吞噬等多种机制退出循环。早期切除导致不易变形的红细胞寿命短。本文提出了贫血和心脏代谢疾病,以考虑年龄依赖性红细胞密度和变形能力之间的关系。镰状细胞病可变形性受损的主要原因是存在以细胞脱水和镰状血红蛋白聚合为特征的致密细胞,在遗传性溶血性疾病中是细胞几何,在缺铁性贫血中是较轻的红细胞对氧化应激的易感性增加。在氧化应激增强的情况下,糖尿病红细胞密度正常,变形能力降低。本文指出,红细胞密度和可变形性的分布概况对于更好地理解红细胞囊化Hb相互作用膜显示个体衰老是重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physiological and pathophysiological significance of erythrocyte senescence, density and deformability: Important but unnoticed trinity
Erythrocytes are the most abundant cells and acting as carrier, deliverer and sensor of oxygen. Therefore, human erythrocyte behavior is a fundamental health indicator. Lifespan of circulating erythrocytes is about 120 days, and hence erythrocyte population shows distribution of aging. The physicochemical property of hemoglobin (Hb) influences the density and the deformability of erythrocytes. Senescent erythrocytes are dense, shrunk, less deformable and finally removed from circulation by several mechanisms such as phagocytosis and eryptosis. Earlier removal leads to the short lifespan of less deformable erythrocytes. Herein, anemic and cardiometabolic diseases are presented in order to consider the relationship between the agedependent erythrocyte density and deformability. The main cause of impaired deformability in sickle cell disease is the presence of dense cells characterized by cellular dehydration and polymerization of sickle Hb, that in hereditary hemolytic diseases is cellular geometry, and that in iron deficiency anemia is an increased susceptibility of lighter erythrocytes to the oxidative stress. Diabetic erythrocytes show seemingly normal density and reduced deformability under the enhanced oxidative stress. This article addresses that distribution profiles of both erythrocyte density and deformability are important for better understanding of the encapsulated Hb interacting membrane of erythrocytes showing individual aging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biorheology
Journal of Biorheology Engineering-Mechanical Engineering
CiteScore
0.50
自引率
0.00%
发文量
5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信