MgB2新型超导带和导线的研制

H. Kumakura, A. Matsumoto, H. Kitaguchi, M. Okada
{"title":"MgB2新型超导带和导线的研制","authors":"H. Kumakura, A. Matsumoto, H. Kitaguchi, M. Okada","doi":"10.2221/JCSJ.37.457","DOIUrl":null,"url":null,"abstract":"We fabricated MgB2 tapes and wires by a powder-in-tube (PIT) method, using MgB2 powder and several sheath materials such as Cu, Cu-Ni, Ni, pure Fe, carbon steel (Fe-C), and stainless steel. Jc of the as-cold rolled (un-sintered) tape significantly increased with the increase of total cross-sectional area reduction by the cold working. Hard sheath materials such as Fe-C and stainless steel are effective to enhance the packing density of MgB2 core and, therefore, to increase Jc values. Non heat treated MgB2 tapes with Fe-C and stainless steel sheaths showed extrapolated Jc values of-3.0-4.5×109A/m2 at 4.2K and zero field. Heat treatment after the cold rolling is effective to enhance Jc values. An order of magnitude higher Jc values were obtained for Fe, Fe-C, and stainless steel sheathed tapes after the heat treatment. Extrapolated Jc values well above 1010A/m2 at 4.2K and a zero magnetic field were obtained for stainless steel and Fe-C sheathed MgB2 tapes. Jc values of PIT-processed MgB2 tapes are less sensitive to strain than those of PIT-processed Bi-based oxide tapes. It is reported that the addition of soft metal powder such as In or Sn to the MgB2 powder is effective to enhance Jc values. We made -10m-long tapes with Ni sheaths, and fabricated small solenoid coil with this tape without sintering. The Ic of the coil was about 80% of the Ic of the short tape, indicating that the homogeneity of Ic in the 10m tape is fairly good. The coil generated 1.3kGauss at 4.2K.","PeriodicalId":93144,"journal":{"name":"Teion kogaku = Cryogenic engineering : [official journal of the Cryogenic Association of Japan]","volume":"63 1","pages":"457-464"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Development of MgB2 New Superconducting Tapes and Wires\",\"authors\":\"H. Kumakura, A. Matsumoto, H. Kitaguchi, M. Okada\",\"doi\":\"10.2221/JCSJ.37.457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We fabricated MgB2 tapes and wires by a powder-in-tube (PIT) method, using MgB2 powder and several sheath materials such as Cu, Cu-Ni, Ni, pure Fe, carbon steel (Fe-C), and stainless steel. Jc of the as-cold rolled (un-sintered) tape significantly increased with the increase of total cross-sectional area reduction by the cold working. Hard sheath materials such as Fe-C and stainless steel are effective to enhance the packing density of MgB2 core and, therefore, to increase Jc values. Non heat treated MgB2 tapes with Fe-C and stainless steel sheaths showed extrapolated Jc values of-3.0-4.5×109A/m2 at 4.2K and zero field. Heat treatment after the cold rolling is effective to enhance Jc values. An order of magnitude higher Jc values were obtained for Fe, Fe-C, and stainless steel sheathed tapes after the heat treatment. Extrapolated Jc values well above 1010A/m2 at 4.2K and a zero magnetic field were obtained for stainless steel and Fe-C sheathed MgB2 tapes. Jc values of PIT-processed MgB2 tapes are less sensitive to strain than those of PIT-processed Bi-based oxide tapes. It is reported that the addition of soft metal powder such as In or Sn to the MgB2 powder is effective to enhance Jc values. We made -10m-long tapes with Ni sheaths, and fabricated small solenoid coil with this tape without sintering. The Ic of the coil was about 80% of the Ic of the short tape, indicating that the homogeneity of Ic in the 10m tape is fairly good. The coil generated 1.3kGauss at 4.2K.\",\"PeriodicalId\":93144,\"journal\":{\"name\":\"Teion kogaku = Cryogenic engineering : [official journal of the Cryogenic Association of Japan]\",\"volume\":\"63 1\",\"pages\":\"457-464\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Teion kogaku = Cryogenic engineering : [official journal of the Cryogenic Association of Japan]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2221/JCSJ.37.457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Teion kogaku = Cryogenic engineering : [official journal of the Cryogenic Association of Japan]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2221/JCSJ.37.457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们使用MgB2粉末和几种护套材料,如Cu、Cu-Ni、Ni、纯Fe、碳钢(Fe- c)和不锈钢,采用管内粉末(PIT)法制备了MgB2带和钢丝。冷轧(未烧结)带的Jc随着冷加工总截面积的增加而显著增加。Fe-C和不锈钢等硬质护套材料能有效提高MgB2芯的充填密度,从而提高Jc值。Fe-C和不锈钢护套未经热处理的MgB2带在4.2K和零场下的外推Jc值为of-3.0-4.5×109A/m2。冷轧后热处理能有效提高Jc值。热处理后,Fe、Fe- c和不锈钢护套带的Jc值提高了一个数量级。在4.2K和零磁场条件下,不锈钢和Fe-C护套MgB2带的外推Jc值远高于1010A/m2。与pit处理的bi基氧化物带相比,pit处理的MgB2带的Jc值对应变的敏感性较低。据报道,在MgB2粉末中加入In或Sn等软金属粉末可有效提高其Jc值。我们用Ni护套制作了-10m长的胶带,并使用该胶带制作了小型电磁线圈,无需烧结。线圈的Ic约为短带Ic的80%,说明10m带Ic的均匀性较好。线圈在4.2K时产生1.3kGauss。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of MgB2 New Superconducting Tapes and Wires
We fabricated MgB2 tapes and wires by a powder-in-tube (PIT) method, using MgB2 powder and several sheath materials such as Cu, Cu-Ni, Ni, pure Fe, carbon steel (Fe-C), and stainless steel. Jc of the as-cold rolled (un-sintered) tape significantly increased with the increase of total cross-sectional area reduction by the cold working. Hard sheath materials such as Fe-C and stainless steel are effective to enhance the packing density of MgB2 core and, therefore, to increase Jc values. Non heat treated MgB2 tapes with Fe-C and stainless steel sheaths showed extrapolated Jc values of-3.0-4.5×109A/m2 at 4.2K and zero field. Heat treatment after the cold rolling is effective to enhance Jc values. An order of magnitude higher Jc values were obtained for Fe, Fe-C, and stainless steel sheathed tapes after the heat treatment. Extrapolated Jc values well above 1010A/m2 at 4.2K and a zero magnetic field were obtained for stainless steel and Fe-C sheathed MgB2 tapes. Jc values of PIT-processed MgB2 tapes are less sensitive to strain than those of PIT-processed Bi-based oxide tapes. It is reported that the addition of soft metal powder such as In or Sn to the MgB2 powder is effective to enhance Jc values. We made -10m-long tapes with Ni sheaths, and fabricated small solenoid coil with this tape without sintering. The Ic of the coil was about 80% of the Ic of the short tape, indicating that the homogeneity of Ic in the 10m tape is fairly good. The coil generated 1.3kGauss at 4.2K.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信