{"title":"计数数据回归中的空间误差","authors":"Marinho Bertanha, Petra Moser","doi":"10.2139/ssrn.2406216","DOIUrl":null,"url":null,"abstract":"Abstract Count data regressions are an important tool for empirical analyses ranging from analyses of patent counts to measures of health and unemployment. Along with negative binomial, Poisson panel regressions are a preferred method of analysis because the Poisson conditional fixed effects maximum likelihood estimator (PCFE) and its sandwich variance estimator are consistent even if the data are not Poisson-distributed, or if the data are correlated over time. Analyses of counts may however also be affected by correlation in the cross-section. For example, patent counts or publications may increase across related research fields in response to common shocks. This paper shows that the PCFE and its sandwich variance estimator are consistent in the presence of such dependence in the cross-section – as long as spatial dependence is time-invariant. We develop a test for time-invariant spatial dependence and provide code in STATA and MATLAB to implement the test.","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":"5 1","pages":"49 - 69"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Spatial Errors in Count Data Regressions\",\"authors\":\"Marinho Bertanha, Petra Moser\",\"doi\":\"10.2139/ssrn.2406216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Count data regressions are an important tool for empirical analyses ranging from analyses of patent counts to measures of health and unemployment. Along with negative binomial, Poisson panel regressions are a preferred method of analysis because the Poisson conditional fixed effects maximum likelihood estimator (PCFE) and its sandwich variance estimator are consistent even if the data are not Poisson-distributed, or if the data are correlated over time. Analyses of counts may however also be affected by correlation in the cross-section. For example, patent counts or publications may increase across related research fields in response to common shocks. This paper shows that the PCFE and its sandwich variance estimator are consistent in the presence of such dependence in the cross-section – as long as spatial dependence is time-invariant. We develop a test for time-invariant spatial dependence and provide code in STATA and MATLAB to implement the test.\",\"PeriodicalId\":36727,\"journal\":{\"name\":\"Journal of Econometric Methods\",\"volume\":\"5 1\",\"pages\":\"49 - 69\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometric Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2406216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2406216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Abstract Count data regressions are an important tool for empirical analyses ranging from analyses of patent counts to measures of health and unemployment. Along with negative binomial, Poisson panel regressions are a preferred method of analysis because the Poisson conditional fixed effects maximum likelihood estimator (PCFE) and its sandwich variance estimator are consistent even if the data are not Poisson-distributed, or if the data are correlated over time. Analyses of counts may however also be affected by correlation in the cross-section. For example, patent counts or publications may increase across related research fields in response to common shocks. This paper shows that the PCFE and its sandwich variance estimator are consistent in the presence of such dependence in the cross-section – as long as spatial dependence is time-invariant. We develop a test for time-invariant spatial dependence and provide code in STATA and MATLAB to implement the test.