计数数据回归中的空间误差

Q3 Mathematics
Marinho Bertanha, Petra Moser
{"title":"计数数据回归中的空间误差","authors":"Marinho Bertanha, Petra Moser","doi":"10.2139/ssrn.2406216","DOIUrl":null,"url":null,"abstract":"Abstract Count data regressions are an important tool for empirical analyses ranging from analyses of patent counts to measures of health and unemployment. Along with negative binomial, Poisson panel regressions are a preferred method of analysis because the Poisson conditional fixed effects maximum likelihood estimator (PCFE) and its sandwich variance estimator are consistent even if the data are not Poisson-distributed, or if the data are correlated over time. Analyses of counts may however also be affected by correlation in the cross-section. For example, patent counts or publications may increase across related research fields in response to common shocks. This paper shows that the PCFE and its sandwich variance estimator are consistent in the presence of such dependence in the cross-section – as long as spatial dependence is time-invariant. We develop a test for time-invariant spatial dependence and provide code in STATA and MATLAB to implement the test.","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":"5 1","pages":"49 - 69"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Spatial Errors in Count Data Regressions\",\"authors\":\"Marinho Bertanha, Petra Moser\",\"doi\":\"10.2139/ssrn.2406216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Count data regressions are an important tool for empirical analyses ranging from analyses of patent counts to measures of health and unemployment. Along with negative binomial, Poisson panel regressions are a preferred method of analysis because the Poisson conditional fixed effects maximum likelihood estimator (PCFE) and its sandwich variance estimator are consistent even if the data are not Poisson-distributed, or if the data are correlated over time. Analyses of counts may however also be affected by correlation in the cross-section. For example, patent counts or publications may increase across related research fields in response to common shocks. This paper shows that the PCFE and its sandwich variance estimator are consistent in the presence of such dependence in the cross-section – as long as spatial dependence is time-invariant. We develop a test for time-invariant spatial dependence and provide code in STATA and MATLAB to implement the test.\",\"PeriodicalId\":36727,\"journal\":{\"name\":\"Journal of Econometric Methods\",\"volume\":\"5 1\",\"pages\":\"49 - 69\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometric Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2406216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2406216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 25

摘要

计数数据回归是实证分析的重要工具,从专利计数分析到健康和失业措施。与负二项一样,泊松面板回归是一种首选的分析方法,因为泊松条件固定效应最大似然估计量(PCFE)和它的三明治方差估计量是一致的,即使数据不是泊松分布的,或者如果数据随时间相关。然而,计数分析也可能受到截面相关性的影响。例如,相关研究领域的专利数量或出版物可能会因共同冲击而增加。本文表明,只要空间相关性是时不变的,在截面上存在这种相关性时,PCFE及其夹心方差估计量是一致的。我们开发了一个时不变空间依赖性测试,并提供了STATA和MATLAB的代码来实现测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial Errors in Count Data Regressions
Abstract Count data regressions are an important tool for empirical analyses ranging from analyses of patent counts to measures of health and unemployment. Along with negative binomial, Poisson panel regressions are a preferred method of analysis because the Poisson conditional fixed effects maximum likelihood estimator (PCFE) and its sandwich variance estimator are consistent even if the data are not Poisson-distributed, or if the data are correlated over time. Analyses of counts may however also be affected by correlation in the cross-section. For example, patent counts or publications may increase across related research fields in response to common shocks. This paper shows that the PCFE and its sandwich variance estimator are consistent in the presence of such dependence in the cross-section – as long as spatial dependence is time-invariant. We develop a test for time-invariant spatial dependence and provide code in STATA and MATLAB to implement the test.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Econometric Methods
Journal of Econometric Methods Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.20
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信