可控源音频大地电磁(csamt)一维反演模型的混合粒子群优化与灰狼优化算法

IF 1.2 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Wahyu Eko Junian, H. Grandis
{"title":"可控源音频大地电磁(csamt)一维反演模型的混合粒子群优化与灰狼优化算法","authors":"Wahyu Eko Junian, H. Grandis","doi":"10.17794/rgn.2023.3.6","DOIUrl":null,"url":null,"abstract":"The Controlled Source Audio-frequency Magnetotellurics (CSAMT) is a geophysical method utilizing artificial electromagnetic signal source to estimate subsurface resistivity structures. One-dimensional (1D) inversion modelling of CSAMT data is non-linear and the solution can be estimated by using global optimization algorithms. Particle Swarm Optimization (PSO) and Grey Wolf Optimizer (GWO) are well-known population-based algorithms having relatively simple mathematical formulation and implementation. Hybridization of PSO and GWO algorithms (called hybrid PSO-GWO) can improve the convergence capability to the global solution. This study applied the hybrid PSO-GWO algorithm for 1D CSAMT inversion modelling. Tests were conducted with synthetic CSAMT data associated with 3-layer, 4-layer and 5-layer earth models to determine the performance of the algorithm. The results show that the hybrid PSO-GWO algorithm has a good performance in obtaining the minimum misfit compared to the original PSO and GWO algorithms. The hybrid PSO-GWO algorithm was also applied to invert CSAMT field data for gold mineralization exploration in the Cibaliung area, Banten Province, Indonesia. The algorithm was able to reconstruct the resistivity model very well which is confirmed by the results from inversion of the data using standard 2D MT inversion software. The model also agrees well with the geological information of the study area.","PeriodicalId":44536,"journal":{"name":"Rudarsko-Geolosko-Naftni Zbornik","volume":"16 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HYBRID PARTICLE SWARM OPTIMIZATION AND GREY WOLF OPTIMIZER ALGORITHM FOR CONTROLLED SOURCE AUDIO-FREQUENCY MAGNETOTELLURICS (CSAMT) ONE-DIMENSIONAL INVERSION MODELLING\",\"authors\":\"Wahyu Eko Junian, H. Grandis\",\"doi\":\"10.17794/rgn.2023.3.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Controlled Source Audio-frequency Magnetotellurics (CSAMT) is a geophysical method utilizing artificial electromagnetic signal source to estimate subsurface resistivity structures. One-dimensional (1D) inversion modelling of CSAMT data is non-linear and the solution can be estimated by using global optimization algorithms. Particle Swarm Optimization (PSO) and Grey Wolf Optimizer (GWO) are well-known population-based algorithms having relatively simple mathematical formulation and implementation. Hybridization of PSO and GWO algorithms (called hybrid PSO-GWO) can improve the convergence capability to the global solution. This study applied the hybrid PSO-GWO algorithm for 1D CSAMT inversion modelling. Tests were conducted with synthetic CSAMT data associated with 3-layer, 4-layer and 5-layer earth models to determine the performance of the algorithm. The results show that the hybrid PSO-GWO algorithm has a good performance in obtaining the minimum misfit compared to the original PSO and GWO algorithms. The hybrid PSO-GWO algorithm was also applied to invert CSAMT field data for gold mineralization exploration in the Cibaliung area, Banten Province, Indonesia. The algorithm was able to reconstruct the resistivity model very well which is confirmed by the results from inversion of the data using standard 2D MT inversion software. The model also agrees well with the geological information of the study area.\",\"PeriodicalId\":44536,\"journal\":{\"name\":\"Rudarsko-Geolosko-Naftni Zbornik\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rudarsko-Geolosko-Naftni Zbornik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17794/rgn.2023.3.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rudarsko-Geolosko-Naftni Zbornik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17794/rgn.2023.3.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

可控源音频大地电磁法是利用人工电磁信号源估计地下电阻率构造的一种地球物理方法。CSAMT数据的一维(1D)反演建模是非线性的,求解方法可采用全局优化算法进行估计。粒子群优化(PSO)和灰狼优化(GWO)是众所周知的基于种群的算法,它们具有相对简单的数学公式和实现。将PSO算法和GWO算法混合使用(称为混合PSO-GWO算法)可以提高对全局解的收敛能力。本研究采用混合PSO-GWO算法进行一维CSAMT反演建模。利用3层、4层和5层地球模型的合成CSAMT数据进行了测试,以确定算法的性能。结果表明,与原有的PSO和GWO算法相比,混合PSO-GWO算法在获得最小失配方面具有良好的性能。并将混合PSO-GWO算法应用于印度尼西亚万丹省八陵地区金矿找矿CSAMT野外数据反演。利用标准的二维大地电磁法反演软件反演数据的结果证实了该算法能很好地重建电阻率模型。该模型与研究区地质资料吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HYBRID PARTICLE SWARM OPTIMIZATION AND GREY WOLF OPTIMIZER ALGORITHM FOR CONTROLLED SOURCE AUDIO-FREQUENCY MAGNETOTELLURICS (CSAMT) ONE-DIMENSIONAL INVERSION MODELLING
The Controlled Source Audio-frequency Magnetotellurics (CSAMT) is a geophysical method utilizing artificial electromagnetic signal source to estimate subsurface resistivity structures. One-dimensional (1D) inversion modelling of CSAMT data is non-linear and the solution can be estimated by using global optimization algorithms. Particle Swarm Optimization (PSO) and Grey Wolf Optimizer (GWO) are well-known population-based algorithms having relatively simple mathematical formulation and implementation. Hybridization of PSO and GWO algorithms (called hybrid PSO-GWO) can improve the convergence capability to the global solution. This study applied the hybrid PSO-GWO algorithm for 1D CSAMT inversion modelling. Tests were conducted with synthetic CSAMT data associated with 3-layer, 4-layer and 5-layer earth models to determine the performance of the algorithm. The results show that the hybrid PSO-GWO algorithm has a good performance in obtaining the minimum misfit compared to the original PSO and GWO algorithms. The hybrid PSO-GWO algorithm was also applied to invert CSAMT field data for gold mineralization exploration in the Cibaliung area, Banten Province, Indonesia. The algorithm was able to reconstruct the resistivity model very well which is confirmed by the results from inversion of the data using standard 2D MT inversion software. The model also agrees well with the geological information of the study area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
15.40%
发文量
50
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信