日本东北部双叶断裂原町段晚第四纪活动的地形地貌图象和钻孔岩心沉积物分析

IF 1.2 Q3 GEOSCIENCES, MULTIDISCIPLINARY
A. R. Puji, N. Takahashi, S. Toda
{"title":"日本东北部双叶断裂原町段晚第四纪活动的地形地貌图象和钻孔岩心沉积物分析","authors":"A. R. Puji, N. Takahashi, S. Toda","doi":"10.17794/rgn.2023.2.12","DOIUrl":null,"url":null,"abstract":"The Haramachi Fault segment in the northeastern part of Honshu Island, Japan, has mainly sinistral fault movements with minor reverse component within the Futaba Fault Zone in the northeastern Japan arc. The 2011 Mw 9.0 earthquake occurred off the Pacific coast of Tohoku which caused large crustal deformations. Despite being the closest active fault to the epicenter, very limited investigation has been conducted on the Futaba Fault Zone. Previous studies used smaller scale topographic maps and fault activity was estimated only from trenching and borehole investigations in the central part of the Haramachi Fault segment. Thus, geometry, kinematic, and recent tectonic activity of the fault segment is not well identified, especially in northern part. In this study, we use a combination of high-resolution DEMs (2-m and 5-m mesh), several types of topographic anaglyph images (slope, negative and positive openness), and conducted field survey to confirm remote sensing interpretation. Subtle surface expression of deformation associated with active faulting, such as deformed terrace risers, deflected drainages, and small fault scarps can now be identified more clearly. Several new fault strands in the northern part of the segment were found supported by fault outcrops found in the field confirming the recent activity of the fault system. The new estimation of the total length of the Haramachi segment produced from the approach of this study yields 25 km, which is capable of producing Mw 6.5 – 7.0 or Mjma 7.2 earthquakes if ruptures were to occur altogether in the future. Moreover, a shallow borehole survey and radiocarbon dating from the soil organic material has revealed the minimal timing estimation of the most recent faulting in the Haramachi segment to be 3694 ± 24 BP. This research provides a revised understanding of active fault distribution and deformation associated with the Haramachi segment and validates the timing of the most recent faulting event more broadly.","PeriodicalId":44536,"journal":{"name":"Rudarsko-Geolosko-Naftni Zbornik","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LATE QUATERNARY ACTIVITY OF THE HARAMACHI SEGMENT OF THE FUTABA FAULT IN NORTHEAST JAPAN THROUGH TOPOGRAPHIC ANAGLYPH IMAGES AND BOREHOLE CORE SEDIMENT ANALYSIS\",\"authors\":\"A. R. Puji, N. Takahashi, S. Toda\",\"doi\":\"10.17794/rgn.2023.2.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Haramachi Fault segment in the northeastern part of Honshu Island, Japan, has mainly sinistral fault movements with minor reverse component within the Futaba Fault Zone in the northeastern Japan arc. The 2011 Mw 9.0 earthquake occurred off the Pacific coast of Tohoku which caused large crustal deformations. Despite being the closest active fault to the epicenter, very limited investigation has been conducted on the Futaba Fault Zone. Previous studies used smaller scale topographic maps and fault activity was estimated only from trenching and borehole investigations in the central part of the Haramachi Fault segment. Thus, geometry, kinematic, and recent tectonic activity of the fault segment is not well identified, especially in northern part. In this study, we use a combination of high-resolution DEMs (2-m and 5-m mesh), several types of topographic anaglyph images (slope, negative and positive openness), and conducted field survey to confirm remote sensing interpretation. Subtle surface expression of deformation associated with active faulting, such as deformed terrace risers, deflected drainages, and small fault scarps can now be identified more clearly. Several new fault strands in the northern part of the segment were found supported by fault outcrops found in the field confirming the recent activity of the fault system. The new estimation of the total length of the Haramachi segment produced from the approach of this study yields 25 km, which is capable of producing Mw 6.5 – 7.0 or Mjma 7.2 earthquakes if ruptures were to occur altogether in the future. Moreover, a shallow borehole survey and radiocarbon dating from the soil organic material has revealed the minimal timing estimation of the most recent faulting in the Haramachi segment to be 3694 ± 24 BP. This research provides a revised understanding of active fault distribution and deformation associated with the Haramachi segment and validates the timing of the most recent faulting event more broadly.\",\"PeriodicalId\":44536,\"journal\":{\"name\":\"Rudarsko-Geolosko-Naftni Zbornik\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rudarsko-Geolosko-Naftni Zbornik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17794/rgn.2023.2.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rudarsko-Geolosko-Naftni Zbornik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17794/rgn.2023.2.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

日本本州岛东北部原町断裂带在日本东北弧双叶断裂带内以左旋为主,反向分量较小。2011年发生在日本东北太平洋沿岸的里氏9.0级地震造成了巨大的地壳变形。尽管双叶断裂带是离震中最近的活动断层,但对其进行的调查非常有限。以前的研究使用的是较小比例尺的地形图,断层活动仅通过在原町断层段中部的挖沟和钻孔调查来估计。因此,断层段的几何、运动学和近期构造活动尚未得到很好的识别,特别是在北部。本研究采用高分辨率dem (2-m和5-m网格)、几种地形地貌图像(坡度、负开放度和正开放度)相结合,并进行实地调查,以确认遥感解译。与活动断裂相关的细微地表变形表现,如变形的阶地立沟、偏转的排水和小断层陡崖,现在可以更清楚地识别出来。在该段北部发现了几条新的断裂链,这些断裂链由野外发现的断裂露头支撑,证实了该断裂系统最近的活动。根据这项研究的方法得出的原町段总长度的新估计为25公里,如果将来全部发生破裂,则能够产生6.5 - 7.0级或7.2级地震。此外,浅层钻孔测量和土壤有机质放射性碳定年显示,原町段最新断裂的最小时间估计为3694±24 BP。这项研究对原町段的活动断层分布和变形有了新的认识,并更广泛地验证了最近一次断层事件的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LATE QUATERNARY ACTIVITY OF THE HARAMACHI SEGMENT OF THE FUTABA FAULT IN NORTHEAST JAPAN THROUGH TOPOGRAPHIC ANAGLYPH IMAGES AND BOREHOLE CORE SEDIMENT ANALYSIS
The Haramachi Fault segment in the northeastern part of Honshu Island, Japan, has mainly sinistral fault movements with minor reverse component within the Futaba Fault Zone in the northeastern Japan arc. The 2011 Mw 9.0 earthquake occurred off the Pacific coast of Tohoku which caused large crustal deformations. Despite being the closest active fault to the epicenter, very limited investigation has been conducted on the Futaba Fault Zone. Previous studies used smaller scale topographic maps and fault activity was estimated only from trenching and borehole investigations in the central part of the Haramachi Fault segment. Thus, geometry, kinematic, and recent tectonic activity of the fault segment is not well identified, especially in northern part. In this study, we use a combination of high-resolution DEMs (2-m and 5-m mesh), several types of topographic anaglyph images (slope, negative and positive openness), and conducted field survey to confirm remote sensing interpretation. Subtle surface expression of deformation associated with active faulting, such as deformed terrace risers, deflected drainages, and small fault scarps can now be identified more clearly. Several new fault strands in the northern part of the segment were found supported by fault outcrops found in the field confirming the recent activity of the fault system. The new estimation of the total length of the Haramachi segment produced from the approach of this study yields 25 km, which is capable of producing Mw 6.5 – 7.0 or Mjma 7.2 earthquakes if ruptures were to occur altogether in the future. Moreover, a shallow borehole survey and radiocarbon dating from the soil organic material has revealed the minimal timing estimation of the most recent faulting in the Haramachi segment to be 3694 ± 24 BP. This research provides a revised understanding of active fault distribution and deformation associated with the Haramachi segment and validates the timing of the most recent faulting event more broadly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
15.40%
发文量
50
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信