{"title":"一种基于蚁群优化的地质不确定性条件下采矿推挤设计新技术","authors":"Seyyed-Omid Gilani, S. Moosazadeh, R. Poormirzaee","doi":"10.17794/rgn.2023.1.10","DOIUrl":null,"url":null,"abstract":"An essential task in the open-pit mine optimizing process is determining the extraction time of material located in the ultimate pit, considering some operational and economic constraints. The proper design of pushbacks has a significant impact on the optimum production planning. On the other hand, some uncertainty sources such as in-situ grade cause both deviations from production and financial goals. This paper presents an extension of a multi-stage formulation for risk-based pushback designing that utilizes the ant colony optimization (ACO) algorithm to solve it. For more detailed studies, two different strategies were developed according to statistical and probabilistic issues. The data of Songun copper mine located in NW Iran was used to evaluate the ability of the proposed approach in controlling the risk of deviation from production targets and increasing the project value. The results indicated the effectiveness of the proposed approach in pushback designing based on geological uncertainty. Examining different strategies showed that the technique based on multiple probability produces better solutions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A NEW TECHNIQUE BASED ON ANT COLONY OPTIMIZATION FOR DESIGNING MINING PUSHBACKS IN THE PRESENCE OF GEOLOGICAL UNCERTAINTY\",\"authors\":\"Seyyed-Omid Gilani, S. Moosazadeh, R. Poormirzaee\",\"doi\":\"10.17794/rgn.2023.1.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An essential task in the open-pit mine optimizing process is determining the extraction time of material located in the ultimate pit, considering some operational and economic constraints. The proper design of pushbacks has a significant impact on the optimum production planning. On the other hand, some uncertainty sources such as in-situ grade cause both deviations from production and financial goals. This paper presents an extension of a multi-stage formulation for risk-based pushback designing that utilizes the ant colony optimization (ACO) algorithm to solve it. For more detailed studies, two different strategies were developed according to statistical and probabilistic issues. The data of Songun copper mine located in NW Iran was used to evaluate the ability of the proposed approach in controlling the risk of deviation from production targets and increasing the project value. The results indicated the effectiveness of the proposed approach in pushback designing based on geological uncertainty. Examining different strategies showed that the technique based on multiple probability produces better solutions.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17794/rgn.2023.1.10\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17794/rgn.2023.1.10","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A NEW TECHNIQUE BASED ON ANT COLONY OPTIMIZATION FOR DESIGNING MINING PUSHBACKS IN THE PRESENCE OF GEOLOGICAL UNCERTAINTY
An essential task in the open-pit mine optimizing process is determining the extraction time of material located in the ultimate pit, considering some operational and economic constraints. The proper design of pushbacks has a significant impact on the optimum production planning. On the other hand, some uncertainty sources such as in-situ grade cause both deviations from production and financial goals. This paper presents an extension of a multi-stage formulation for risk-based pushback designing that utilizes the ant colony optimization (ACO) algorithm to solve it. For more detailed studies, two different strategies were developed according to statistical and probabilistic issues. The data of Songun copper mine located in NW Iran was used to evaluate the ability of the proposed approach in controlling the risk of deviation from production targets and increasing the project value. The results indicated the effectiveness of the proposed approach in pushback designing based on geological uncertainty. Examining different strategies showed that the technique based on multiple probability produces better solutions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.