UV -交联复合聚乙烯-氧化锌纳米杂化物处理橡胶工业废水的性能评价

Q2 Materials Science
T. Kusworo, N. Aryanti, D. P. Utomo, Enny Nurmala
{"title":"UV -交联复合聚乙烯-氧化锌纳米杂化物处理橡胶工业废水的性能评价","authors":"T. Kusworo, N. Aryanti, D. P. Utomo, Enny Nurmala","doi":"10.22079/JMSR.2020.120490.1334","DOIUrl":null,"url":null,"abstract":"Polyethersulfone (PES) membrane can be easily fouled during wastewater treatment as it is slightly hydrophobic. Consequently, several modifications are required to improve membrane surface properties to avoid membrane fouling. UV irradiation and cross-linked polyvinyl alcohol coating on nanohybrid membranes were performed in this study, and PES was combined with ZnO nanoparticles as an inorganic additive. Also, the PES-ZnO nanohybrid membrane was treated under the UV irradiation for a specific exposure time followed with membrane coating using polyvinyl alcohol (PVA) by the dip-coating method. Then, rubber wastewater filtration tests were performed using a cross-flow filtration system. The results revealed that the modifications significantly improved permeability and selectivity. As the duration of the UV irradiation increased, the higher mean flux value increased up to 14.55 L.m-2.h-1, but it was sacrificing the rejection efficiency. While the PVA coating decreased the water permeability up to 10.5 L.m-2.h-1 and increased the PVA concentration, the contaminant rejection increased up to 82%. The best membrane composition based on this study consisted of 17 wt.% of PES, 1 wt.% of ZnO nanoparticles, 5 wt.% Polyethylene glycol (PEG), 2 minutes UV irradiation, and 3% PVA coating.","PeriodicalId":16427,"journal":{"name":"Journal of Membrane Science and Research","volume":"7 1","pages":"4-13"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Performance Evaluation of PES-ZnO Nanohybrid using a Combination of UV Irradiation and Cross-linking for Wastewater Treatment of the Rubber Industry to Clean Water\",\"authors\":\"T. Kusworo, N. Aryanti, D. P. Utomo, Enny Nurmala\",\"doi\":\"10.22079/JMSR.2020.120490.1334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polyethersulfone (PES) membrane can be easily fouled during wastewater treatment as it is slightly hydrophobic. Consequently, several modifications are required to improve membrane surface properties to avoid membrane fouling. UV irradiation and cross-linked polyvinyl alcohol coating on nanohybrid membranes were performed in this study, and PES was combined with ZnO nanoparticles as an inorganic additive. Also, the PES-ZnO nanohybrid membrane was treated under the UV irradiation for a specific exposure time followed with membrane coating using polyvinyl alcohol (PVA) by the dip-coating method. Then, rubber wastewater filtration tests were performed using a cross-flow filtration system. The results revealed that the modifications significantly improved permeability and selectivity. As the duration of the UV irradiation increased, the higher mean flux value increased up to 14.55 L.m-2.h-1, but it was sacrificing the rejection efficiency. While the PVA coating decreased the water permeability up to 10.5 L.m-2.h-1 and increased the PVA concentration, the contaminant rejection increased up to 82%. The best membrane composition based on this study consisted of 17 wt.% of PES, 1 wt.% of ZnO nanoparticles, 5 wt.% Polyethylene glycol (PEG), 2 minutes UV irradiation, and 3% PVA coating.\",\"PeriodicalId\":16427,\"journal\":{\"name\":\"Journal of Membrane Science and Research\",\"volume\":\"7 1\",\"pages\":\"4-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science and Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22079/JMSR.2020.120490.1334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22079/JMSR.2020.120490.1334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 4

摘要

聚醚砜(PES)膜具有轻微疏水性,在污水处理过程中容易受到污染。因此,需要进行一些改性来改善膜的表面性能,以避免膜污染。本研究采用紫外光照射和交联聚乙烯醇包覆纳米杂化膜,并将PES与ZnO纳米粒子作为无机添加剂复合。同时,对pe - zno纳米杂化膜进行了特定曝光时间的紫外辐照处理,并采用聚乙烯醇(PVA)浸渍涂膜。然后,采用横流过滤系统对橡胶废水进行了过滤试验。结果表明,改性显著提高了渗透率和选择性。随着紫外线照射时间的增加,较高的平均通量值增加到14.55 L.m-2.h-1,但牺牲了过滤效率。PVA涂层使透水性降低10.5 L.m-2.h-1,使PVA浓度提高,污染物截留率提高82%。基于本研究的最佳膜组成为:17 wt.%的PES, 1 wt.%的ZnO纳米粒子,5 wt.%的聚乙二醇(PEG), 2分钟的紫外线照射,3%的PVA涂层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Evaluation of PES-ZnO Nanohybrid using a Combination of UV Irradiation and Cross-linking for Wastewater Treatment of the Rubber Industry to Clean Water
Polyethersulfone (PES) membrane can be easily fouled during wastewater treatment as it is slightly hydrophobic. Consequently, several modifications are required to improve membrane surface properties to avoid membrane fouling. UV irradiation and cross-linked polyvinyl alcohol coating on nanohybrid membranes were performed in this study, and PES was combined with ZnO nanoparticles as an inorganic additive. Also, the PES-ZnO nanohybrid membrane was treated under the UV irradiation for a specific exposure time followed with membrane coating using polyvinyl alcohol (PVA) by the dip-coating method. Then, rubber wastewater filtration tests were performed using a cross-flow filtration system. The results revealed that the modifications significantly improved permeability and selectivity. As the duration of the UV irradiation increased, the higher mean flux value increased up to 14.55 L.m-2.h-1, but it was sacrificing the rejection efficiency. While the PVA coating decreased the water permeability up to 10.5 L.m-2.h-1 and increased the PVA concentration, the contaminant rejection increased up to 82%. The best membrane composition based on this study consisted of 17 wt.% of PES, 1 wt.% of ZnO nanoparticles, 5 wt.% Polyethylene glycol (PEG), 2 minutes UV irradiation, and 3% PVA coating.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Membrane Science and Research
Journal of Membrane Science and Research Materials Science-Materials Science (miscellaneous)
CiteScore
4.00
自引率
0.00%
发文量
1
审稿时长
8 weeks
期刊介绍: The Journal of Membrane Science and Research (JMSR) is an Open Access journal with Free of Charge publication policy, which provides a focal point for academic and industrial chemical and polymer engineers, chemists, materials scientists, and membranologists working on both membranes and membrane processes, particularly for four major sectors, including Energy, Water, Environment and Food. The journal publishes original research and reviews on membranes (organic, inorganic, liquid and etc.) and membrane processes (MF, UF, NF, RO, ED, Dialysis, MD, PV, CDI, FO, GP, VP and etc.), membrane formation/structure/performance, fouling, module/process design, and processes/applications in various areas. Primary emphasis is on structure, function, and performance of essentially non-biological membranes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信