基于右截法的Pareto分布参数估计

Q4 Mathematics
Rana Hasan Shamkhi, Wisam Kamil Ghafil, A. A. Jaaze
{"title":"基于右截法的Pareto分布参数估计","authors":"Rana Hasan Shamkhi, Wisam Kamil Ghafil, A. A. Jaaze","doi":"10.22075/IJNAA.2022.5819","DOIUrl":null,"url":null,"abstract":"In this paper, we found the estimation of the unknown parameter $delta$ when $vartheta$  is a known parameter in the Pareto distribution. First, we get the maximum probability estimators(MLEs) for unknown parameters. We have obtained the Bayes Estimators of unknown parameter $delta$  using Lindley's approximation. A Monte Carlo simulation is performed and used a programming language R to compare the performance of the method used, and the data set was analyzed for illustration purposes.","PeriodicalId":14240,"journal":{"name":"International Journal of Nonlinear Analysis and Applications","volume":"40 1","pages":"1873-1877"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of parameter for the Pareto distribution based on right censoring\",\"authors\":\"Rana Hasan Shamkhi, Wisam Kamil Ghafil, A. A. Jaaze\",\"doi\":\"10.22075/IJNAA.2022.5819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we found the estimation of the unknown parameter $delta$ when $vartheta$  is a known parameter in the Pareto distribution. First, we get the maximum probability estimators(MLEs) for unknown parameters. We have obtained the Bayes Estimators of unknown parameter $delta$  using Lindley's approximation. A Monte Carlo simulation is performed and used a programming language R to compare the performance of the method used, and the data set was analyzed for illustration purposes.\",\"PeriodicalId\":14240,\"journal\":{\"name\":\"International Journal of Nonlinear Analysis and Applications\",\"volume\":\"40 1\",\"pages\":\"1873-1877\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22075/IJNAA.2022.5819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22075/IJNAA.2022.5819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在Pareto分布中,当参数$vartheta$为已知参数时未知参数$delta$的估计。首先,我们得到未知参数的最大概率估计量。我们利用林德利近似得到了未知参数$delta$的贝叶斯估计量。进行了蒙特卡罗模拟,并使用编程语言R来比较所使用方法的性能,并对数据集进行了分析,以说明目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of parameter for the Pareto distribution based on right censoring
In this paper, we found the estimation of the unknown parameter $delta$ when $vartheta$  is a known parameter in the Pareto distribution. First, we get the maximum probability estimators(MLEs) for unknown parameters. We have obtained the Bayes Estimators of unknown parameter $delta$  using Lindley's approximation. A Monte Carlo simulation is performed and used a programming language R to compare the performance of the method used, and the data set was analyzed for illustration purposes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
160
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信