Kumaraswamy分布形状参数的数值估计、非贝叶斯估计和贝叶斯估计的比较研究

Q4 Mathematics
M. Mahmoud, Amal A. Mohammed, Sudad K. Abraheem
{"title":"Kumaraswamy分布形状参数的数值估计、非贝叶斯估计和贝叶斯估计的比较研究","authors":"M. Mahmoud, Amal A. Mohammed, Sudad K. Abraheem","doi":"10.22075/IJNAA.2022.5756","DOIUrl":null,"url":null,"abstract":"This paper is considered with Kumaraswamy distribution. Numerical, non-Bayes and Bayes methods of estimation were used to estimate the unknown shape parameter. The maximum likelihood is obtained as a non-Bayes estimator. As well as, Bayes estimators under a symmetric loss function (De-groot and NLINEX) by using four types of informative priors three double priors and one single prior. In addition, numerical estimators are obtained by using Newton's method and the false position method. Simulation research is conducted for the comparison of the effectiveness of the proposed estimators. Matlab 2015 will be used to obtain the numerical results.","PeriodicalId":14240,"journal":{"name":"International Journal of Nonlinear Analysis and Applications","volume":"13 1","pages":"1417-1434"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative study on numerical, non-Bayes and Bayes estimation for the shape parameter of Kumaraswamy distribution\",\"authors\":\"M. Mahmoud, Amal A. Mohammed, Sudad K. Abraheem\",\"doi\":\"10.22075/IJNAA.2022.5756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is considered with Kumaraswamy distribution. Numerical, non-Bayes and Bayes methods of estimation were used to estimate the unknown shape parameter. The maximum likelihood is obtained as a non-Bayes estimator. As well as, Bayes estimators under a symmetric loss function (De-groot and NLINEX) by using four types of informative priors three double priors and one single prior. In addition, numerical estimators are obtained by using Newton's method and the false position method. Simulation research is conducted for the comparison of the effectiveness of the proposed estimators. Matlab 2015 will be used to obtain the numerical results.\",\"PeriodicalId\":14240,\"journal\":{\"name\":\"International Journal of Nonlinear Analysis and Applications\",\"volume\":\"13 1\",\"pages\":\"1417-1434\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22075/IJNAA.2022.5756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22075/IJNAA.2022.5756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文用Kumaraswamy分布来考虑。分别采用数值、非贝叶斯和贝叶斯估计方法对未知形状参数进行估计。最大似然是作为非贝叶斯估计量得到的。此外,在对称损失函数(De-groot和NLINEX)下,使用四种信息先验(三种双先验和一种单先验)进行贝叶斯估计。此外,利用牛顿法和假位置法得到了数值估计量。通过仿真研究,比较了所提估计器的有效性。将使用Matlab 2015来获得数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative study on numerical, non-Bayes and Bayes estimation for the shape parameter of Kumaraswamy distribution
This paper is considered with Kumaraswamy distribution. Numerical, non-Bayes and Bayes methods of estimation were used to estimate the unknown shape parameter. The maximum likelihood is obtained as a non-Bayes estimator. As well as, Bayes estimators under a symmetric loss function (De-groot and NLINEX) by using four types of informative priors three double priors and one single prior. In addition, numerical estimators are obtained by using Newton's method and the false position method. Simulation research is conducted for the comparison of the effectiveness of the proposed estimators. Matlab 2015 will be used to obtain the numerical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
160
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信