稀疏最小平均方差估计通过信号提取方法进行多元回归

Q4 Mathematics
Saja Mohammad, Z. Alabacy
{"title":"稀疏最小平均方差估计通过信号提取方法进行多元回归","authors":"Saja Mohammad, Z. Alabacy","doi":"10.22075/IJNAA.2022.5660","DOIUrl":null,"url":null,"abstract":"In this paper, a new sparse method called (MAVE-SiER) is proposed, to introduce MAVE-SiER, we combined the effective sufficient dimension reduction method MAVE with the sparse method Signal extraction approach to multivariate regression (SiER). MAVE-SiER has the benefit of expanding the Signal extraction method to multivariate regression (SiER) to nonlinear and multi-dimensional regression. MAVE-SiER also allows MAVE to deal with problems which the predictors are highly correlated. MAVE-SiER may estimate dimensions exhaustively while concurrently choosing useful variables. Simulation studies confirmed MAVE-SiER performance.","PeriodicalId":14240,"journal":{"name":"International Journal of Nonlinear Analysis and Applications","volume":"13 1","pages":"1167-1173"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse minimum average variance estimation through signal extraction approach to multivariate regression\",\"authors\":\"Saja Mohammad, Z. Alabacy\",\"doi\":\"10.22075/IJNAA.2022.5660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new sparse method called (MAVE-SiER) is proposed, to introduce MAVE-SiER, we combined the effective sufficient dimension reduction method MAVE with the sparse method Signal extraction approach to multivariate regression (SiER). MAVE-SiER has the benefit of expanding the Signal extraction method to multivariate regression (SiER) to nonlinear and multi-dimensional regression. MAVE-SiER also allows MAVE to deal with problems which the predictors are highly correlated. MAVE-SiER may estimate dimensions exhaustively while concurrently choosing useful variables. Simulation studies confirmed MAVE-SiER performance.\",\"PeriodicalId\":14240,\"journal\":{\"name\":\"International Journal of Nonlinear Analysis and Applications\",\"volume\":\"13 1\",\"pages\":\"1167-1173\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22075/IJNAA.2022.5660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22075/IJNAA.2022.5660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的稀疏方法(MAVE-SiER),为了引入MAVE-SiER,我们将有效的充分降维方法MAVE与稀疏方法信号提取方法多变量回归(SiER)相结合。MAVE-SiER的优点是将信号提取方法从多元回归(SiER)扩展到非线性和多维回归。MAVE- sier还允许MAVE处理预测因子高度相关的问题。MAVE-SiER可以在同时选择有用变量的同时详尽地估计维度。仿真研究证实了MAVE-SiER的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse minimum average variance estimation through signal extraction approach to multivariate regression
In this paper, a new sparse method called (MAVE-SiER) is proposed, to introduce MAVE-SiER, we combined the effective sufficient dimension reduction method MAVE with the sparse method Signal extraction approach to multivariate regression (SiER). MAVE-SiER has the benefit of expanding the Signal extraction method to multivariate regression (SiER) to nonlinear and multi-dimensional regression. MAVE-SiER also allows MAVE to deal with problems which the predictors are highly correlated. MAVE-SiER may estimate dimensions exhaustively while concurrently choosing useful variables. Simulation studies confirmed MAVE-SiER performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
160
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信