结合不同权函数的b样条最小二乘格式求解广义正则化长波方程

Q4 Mathematics
H. O. Al-Humedi
{"title":"结合不同权函数的b样条最小二乘格式求解广义正则化长波方程","authors":"H. O. Al-Humedi","doi":"10.22075/IJNAA.2022.5468","DOIUrl":null,"url":null,"abstract":"For solving differential equations, a variety of numerical methods are available, accuracy, performance, and application are all different. In this article, we proposed new numerical techniques for solving the generalized regularized long wave equation(GRLWE) that are based on types M and M-1 of B-splines-least-square method (BSLSM) and weight function of B-splines respectively, which were proposed previously for solving integro-differential equations [2] where $Min {N}$.  We investigated linear stability using a Fourier method.","PeriodicalId":14240,"journal":{"name":"International Journal of Nonlinear Analysis and Applications","volume":"13 1","pages":"159-177"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining B-spline least-square schemes with different weight functions to solve the generalized regularized long wave equation\",\"authors\":\"H. O. Al-Humedi\",\"doi\":\"10.22075/IJNAA.2022.5468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For solving differential equations, a variety of numerical methods are available, accuracy, performance, and application are all different. In this article, we proposed new numerical techniques for solving the generalized regularized long wave equation(GRLWE) that are based on types M and M-1 of B-splines-least-square method (BSLSM) and weight function of B-splines respectively, which were proposed previously for solving integro-differential equations [2] where $Min {N}$.  We investigated linear stability using a Fourier method.\",\"PeriodicalId\":14240,\"journal\":{\"name\":\"International Journal of Nonlinear Analysis and Applications\",\"volume\":\"13 1\",\"pages\":\"159-177\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22075/IJNAA.2022.5468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22075/IJNAA.2022.5468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

求解微分方程的数值方法多种多样,精度、性能、应用等各不相同。本文提出了基于b样条M型和M-1型的广义正则化长波方程(GRLWE)的新的数值求解方法,即b样条最小二乘法(BSLSM)和b样条权函数,这两种方法分别用于求解包含$Min {N}$的积分微分方程[2]。我们用傅里叶方法研究了线性稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining B-spline least-square schemes with different weight functions to solve the generalized regularized long wave equation
For solving differential equations, a variety of numerical methods are available, accuracy, performance, and application are all different. In this article, we proposed new numerical techniques for solving the generalized regularized long wave equation(GRLWE) that are based on types M and M-1 of B-splines-least-square method (BSLSM) and weight function of B-splines respectively, which were proposed previously for solving integro-differential equations [2] where $Min {N}$.  We investigated linear stability using a Fourier method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
160
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信