具有规定极点和限制零点的有理函数的增长估计

Q4 Mathematics
Ishfaq Dar, N. A. Rather, Mohd Shafi Wani
{"title":"具有规定极点和限制零点的有理函数的增长估计","authors":"Ishfaq Dar, N. A. Rather, Mohd Shafi Wani","doi":"10.22075/IJNAA.2021.23465.2544","DOIUrl":null,"url":null,"abstract":"Let $r(z)= f(z)/w(z)$ where $f(z)$ be a polynomial of degree at most $n$ and $w(z)= prod_{j=1}^{n}(z-a_{j})$, $|a_j|> 1$ for $1leq j leq n.$ If the rational function $r(z)neq 0$ in $|z|< k$, then for $k =1$, it is known that $$left|r(Rz)right|leq left(frac{left|B(Rz)right|+1}{2}right) underset{|z|=1}sup|r(z)|,,, for ,,,|z|=1$$ where $ B(z)= prod_{j=1}^{n}left{(1-bar{a_{j}}z)/(z-a_{j})right}$. In this paper, we consider the case $k geq 1$ and obtain certain results concerning the growth of the maximum modulus of the rational functions with prescribed poles and restricted zeros in the Chebyshev norm on the unit circle in the complex plane.","PeriodicalId":14240,"journal":{"name":"International Journal of Nonlinear Analysis and Applications","volume":"13 1","pages":"247-252"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth estimate for rational functions with prescribed poles and restricted zeros\",\"authors\":\"Ishfaq Dar, N. A. Rather, Mohd Shafi Wani\",\"doi\":\"10.22075/IJNAA.2021.23465.2544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $r(z)= f(z)/w(z)$ where $f(z)$ be a polynomial of degree at most $n$ and $w(z)= prod_{j=1}^{n}(z-a_{j})$, $|a_j|> 1$ for $1leq j leq n.$ If the rational function $r(z)neq 0$ in $|z|< k$, then for $k =1$, it is known that $$left|r(Rz)right|leq left(frac{left|B(Rz)right|+1}{2}right) underset{|z|=1}sup|r(z)|,,, for ,,,|z|=1$$ where $ B(z)= prod_{j=1}^{n}left{(1-bar{a_{j}}z)/(z-a_{j})right}$. In this paper, we consider the case $k geq 1$ and obtain certain results concerning the growth of the maximum modulus of the rational functions with prescribed poles and restricted zeros in the Chebyshev norm on the unit circle in the complex plane.\",\"PeriodicalId\":14240,\"journal\":{\"name\":\"International Journal of Nonlinear Analysis and Applications\",\"volume\":\"13 1\",\"pages\":\"247-252\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22075/IJNAA.2021.23465.2544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22075/IJNAA.2021.23465.2544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

让$ r (z) = f (z) / w (z), f (z)美元是美元最多$ n次多项式和w美元(z) = prod_ {j = 1} ^ {n} (z-a_ {j})美元,美元| a_j | > 1美元1 leq j leq n。如果美元有理函数r (z) neq 0美元在z $ | | < k美元,那么对于k = 1美元,众所周知,$ $ | r (Rz)左右| leq左(压裂{左| B (Rz)右| + 1}{2})支撑{| | z = 1}一口r (z) |……| | | z = 1 $ $ $ B (z) = prod_ {j = 1} ^ {n}左{(1块{现代{j}} z) / (z-a_ {j})右}$。本文考虑了复平面上单位圆上具有规定极点和限制零的有理函数在切比雪夫范数上的最大模的增长问题,得到了一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Growth estimate for rational functions with prescribed poles and restricted zeros
Let $r(z)= f(z)/w(z)$ where $f(z)$ be a polynomial of degree at most $n$ and $w(z)= prod_{j=1}^{n}(z-a_{j})$, $|a_j|> 1$ for $1leq j leq n.$ If the rational function $r(z)neq 0$ in $|z|< k$, then for $k =1$, it is known that $$left|r(Rz)right|leq left(frac{left|B(Rz)right|+1}{2}right) underset{|z|=1}sup|r(z)|,,, for ,,,|z|=1$$ where $ B(z)= prod_{j=1}^{n}left{(1-bar{a_{j}}z)/(z-a_{j})right}$. In this paper, we consider the case $k geq 1$ and obtain certain results concerning the growth of the maximum modulus of the rational functions with prescribed poles and restricted zeros in the Chebyshev norm on the unit circle in the complex plane.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
160
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信