利用richmyer型非标准有限差分法求解非线性Burgers-Huxley方程

Q4 Mathematics
F. Izadi, H. Najafi, A. Sheikhani
{"title":"利用richmyer型非标准有限差分法求解非线性Burgers-Huxley方程","authors":"F. Izadi, H. Najafi, A. Sheikhani","doi":"10.22075/IJNAA.2021.25004.2878","DOIUrl":null,"url":null,"abstract":"The Burger‒Huxley equation as a well-known nonlinear physical model is studied numerically in the present paper. In this respect, the nonstandard finite difference (NSFD) scheme in company with the Richtmyer’s (3, 1, 1) implicit formula is formally adopted to accomplish this goal. Moreover, the stability, convergence, and consistency analyses of nonstandard finite difference schemes are investigated systematically. Several case studies with comparisons are provided, confirming that the current numerical scheme is capable of resulting in highly accurate approximations.","PeriodicalId":14240,"journal":{"name":"International Journal of Nonlinear Analysis and Applications","volume":"13 1","pages":"1507-1518"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical solutions of nonlinear Burgers‒Huxley equation through the Richtmyer type nonstandard finite difference method\",\"authors\":\"F. Izadi, H. Najafi, A. Sheikhani\",\"doi\":\"10.22075/IJNAA.2021.25004.2878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Burger‒Huxley equation as a well-known nonlinear physical model is studied numerically in the present paper. In this respect, the nonstandard finite difference (NSFD) scheme in company with the Richtmyer’s (3, 1, 1) implicit formula is formally adopted to accomplish this goal. Moreover, the stability, convergence, and consistency analyses of nonstandard finite difference schemes are investigated systematically. Several case studies with comparisons are provided, confirming that the current numerical scheme is capable of resulting in highly accurate approximations.\",\"PeriodicalId\":14240,\"journal\":{\"name\":\"International Journal of Nonlinear Analysis and Applications\",\"volume\":\"13 1\",\"pages\":\"1507-1518\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22075/IJNAA.2021.25004.2878\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22075/IJNAA.2021.25004.2878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文对众所周知的非线性物理模型Burger-Huxley方程进行了数值研究。在这方面,正式采用非标准有限差分(NSFD)格式和richhtmyer(3,1,1)隐式公式来实现这一目标。此外,系统地研究了非标准有限差分格式的稳定性、收敛性和一致性分析。文中提供了几个比较的案例研究,证实了目前的数值方案能够产生高度精确的近似值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical solutions of nonlinear Burgers‒Huxley equation through the Richtmyer type nonstandard finite difference method
The Burger‒Huxley equation as a well-known nonlinear physical model is studied numerically in the present paper. In this respect, the nonstandard finite difference (NSFD) scheme in company with the Richtmyer’s (3, 1, 1) implicit formula is formally adopted to accomplish this goal. Moreover, the stability, convergence, and consistency analyses of nonstandard finite difference schemes are investigated systematically. Several case studies with comparisons are provided, confirming that the current numerical scheme is capable of resulting in highly accurate approximations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
160
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信