用不动点定理研究Banach代数中若干泛函积分方程解的存在性

Q4 Mathematics
M. Kazemi
{"title":"用不动点定理研究Banach代数中若干泛函积分方程解的存在性","authors":"M. Kazemi","doi":"10.22075/IJNAA.2021.23635.2570","DOIUrl":null,"url":null,"abstract":"In this research, we analyze the existence of solution for some nonlinear functional integral equations using the techniques of measures of noncompactness and the Petryshyn's fixed point theorem in Banach space. The results obtained in this paper cover many existence results obtained by numerous authors under some weaker conditions. We also give an example satisfying the conditions of our main theorem but not satisfying the conditions described by other authors.","PeriodicalId":14240,"journal":{"name":"International Journal of Nonlinear Analysis and Applications","volume":"13 1","pages":"451-466"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On existence of solutions for some functional integral equations in Banach algebra by fixed point theorem\",\"authors\":\"M. Kazemi\",\"doi\":\"10.22075/IJNAA.2021.23635.2570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, we analyze the existence of solution for some nonlinear functional integral equations using the techniques of measures of noncompactness and the Petryshyn's fixed point theorem in Banach space. The results obtained in this paper cover many existence results obtained by numerous authors under some weaker conditions. We also give an example satisfying the conditions of our main theorem but not satisfying the conditions described by other authors.\",\"PeriodicalId\":14240,\"journal\":{\"name\":\"International Journal of Nonlinear Analysis and Applications\",\"volume\":\"13 1\",\"pages\":\"451-466\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22075/IJNAA.2021.23635.2570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22075/IJNAA.2021.23635.2570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

本文利用非紧性测度技术和Banach空间中的Petryshyn不动点定理,分析了一类非线性泛函积分方程解的存在性。本文所得到的结果涵盖了许多作者在一些较弱条件下得到的存在性结果。我们还给出了一个满足我们主要定理的条件,但不满足其他作者所描述的条件的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On existence of solutions for some functional integral equations in Banach algebra by fixed point theorem
In this research, we analyze the existence of solution for some nonlinear functional integral equations using the techniques of measures of noncompactness and the Petryshyn's fixed point theorem in Banach space. The results obtained in this paper cover many existence results obtained by numerous authors under some weaker conditions. We also give an example satisfying the conditions of our main theorem but not satisfying the conditions described by other authors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
160
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信