具有远程相互作用的离散非线性薛定谔方程的同斜轨道和定域解

Q4 Mathematics
Allal Mehazzem, Mohamed Saleh Abdelouahab, K. Haouam
{"title":"具有远程相互作用的离散非线性薛定谔方程的同斜轨道和定域解","authors":"Allal Mehazzem, Mohamed Saleh Abdelouahab, K. Haouam","doi":"10.22075/IJNAA.2021.23619.2588","DOIUrl":null,"url":null,"abstract":"In this paper, we use the homoclinic orbit approach without using small perturbations to prove the existence of soliton solutions of the discrete nonlinear Schrodinger equations with long-range interaction by employing the properties of the symmetries of reversible planar maps. Moreover, the long-range interaction by a potential proportional to $1/l^{1+alpha} $ with fractional $alpha < 1 $ and $l $ as natural number.","PeriodicalId":14240,"journal":{"name":"International Journal of Nonlinear Analysis and Applications","volume":"28 1","pages":"353-363"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homoclinic Orbits and Localized Solutions in Discrete Nonlinear Schrodinger Equation with Long-Range Interaction\",\"authors\":\"Allal Mehazzem, Mohamed Saleh Abdelouahab, K. Haouam\",\"doi\":\"10.22075/IJNAA.2021.23619.2588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we use the homoclinic orbit approach without using small perturbations to prove the existence of soliton solutions of the discrete nonlinear Schrodinger equations with long-range interaction by employing the properties of the symmetries of reversible planar maps. Moreover, the long-range interaction by a potential proportional to $1/l^{1+alpha} $ with fractional $alpha < 1 $ and $l $ as natural number.\",\"PeriodicalId\":14240,\"journal\":{\"name\":\"International Journal of Nonlinear Analysis and Applications\",\"volume\":\"28 1\",\"pages\":\"353-363\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22075/IJNAA.2021.23619.2588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22075/IJNAA.2021.23619.2588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文利用可逆平面映射对称性的性质,利用不使用小扰动的同斜轨道方法,证明了具有远距离相互作用的离散非线性薛定谔方程孤子解的存在性。此外,远程相互作用由一个与$1/l^{1+alpha} $成比例的势,分数$alpha < 1 $, $l $为自然数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homoclinic Orbits and Localized Solutions in Discrete Nonlinear Schrodinger Equation with Long-Range Interaction
In this paper, we use the homoclinic orbit approach without using small perturbations to prove the existence of soliton solutions of the discrete nonlinear Schrodinger equations with long-range interaction by employing the properties of the symmetries of reversible planar maps. Moreover, the long-range interaction by a potential proportional to $1/l^{1+alpha} $ with fractional $alpha < 1 $ and $l $ as natural number.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
160
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信