Anupam Das, Vahid Parvaneh, Bhuban Chandra Deuri, Z. Bagheri
{"title":"利用Mizogochi-Takahashi映射推广Darbo不动点定理在包含$(k, s)$-Riemann-Liouville和Erd'{e}lyi-Kober分数积分的混合分数积分方程上的应用","authors":"Anupam Das, Vahid Parvaneh, Bhuban Chandra Deuri, Z. Bagheri","doi":"10.22075/IJNAA.2021.23002.2451","DOIUrl":null,"url":null,"abstract":"We have established the solvability of fractional integral equations with both $(k,s)$-Riemann-Liouville and Erd'{e}lyi-Kober fractional integrals using a new generalized version of the Darbo's theorem using Mizogochi-Takahashi mappings and justify the validity of our results with the help of suitable examples.","PeriodicalId":14240,"journal":{"name":"International Journal of Nonlinear Analysis and Applications","volume":"13 1","pages":"859-869"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Application of a generalization of Darbo's fixed point theorem via Mizogochi-Takahashi mappings on mixed fractional integral equations involving $(k, s)$-Riemann-Liouville and Erd'{e}lyi-Kober fractional integrals\",\"authors\":\"Anupam Das, Vahid Parvaneh, Bhuban Chandra Deuri, Z. Bagheri\",\"doi\":\"10.22075/IJNAA.2021.23002.2451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have established the solvability of fractional integral equations with both $(k,s)$-Riemann-Liouville and Erd'{e}lyi-Kober fractional integrals using a new generalized version of the Darbo's theorem using Mizogochi-Takahashi mappings and justify the validity of our results with the help of suitable examples.\",\"PeriodicalId\":14240,\"journal\":{\"name\":\"International Journal of Nonlinear Analysis and Applications\",\"volume\":\"13 1\",\"pages\":\"859-869\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22075/IJNAA.2021.23002.2451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22075/IJNAA.2021.23002.2451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Application of a generalization of Darbo's fixed point theorem via Mizogochi-Takahashi mappings on mixed fractional integral equations involving $(k, s)$-Riemann-Liouville and Erd'{e}lyi-Kober fractional integrals
We have established the solvability of fractional integral equations with both $(k,s)$-Riemann-Liouville and Erd'{e}lyi-Kober fractional integrals using a new generalized version of the Darbo's theorem using Mizogochi-Takahashi mappings and justify the validity of our results with the help of suitable examples.