用Petryshyn不动点定理求解非线性Volterra积分方程的可解性及数值方法

Q4 Mathematics
A. Deep, Ashisha Kumar, Syed Abbas, M. Rabbani
{"title":"用Petryshyn不动点定理求解非线性Volterra积分方程的可解性及数值方法","authors":"A. Deep, Ashisha Kumar, Syed Abbas, M. Rabbani","doi":"10.22075/IJNAA.2021.22858.2422","DOIUrl":null,"url":null,"abstract":"In this paper, utilizing the technique of Petryshyn’s fixed point theorem in Banach algebra, we analyze the existence of solution for functional integral equations, which includes as special cases many functional integral equations that arise in various branches of non-linear analysis and its application. Finally, we introduce the numerical method formed by modified homotopy perturbation approach to resolving the problem with acceptable accuracy.","PeriodicalId":14240,"journal":{"name":"International Journal of Nonlinear Analysis and Applications","volume":"13 1","pages":"1-28"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Solvability and numerical method for non-linear Volterra integral equations by using Petryshyn’s fixed point theorem\",\"authors\":\"A. Deep, Ashisha Kumar, Syed Abbas, M. Rabbani\",\"doi\":\"10.22075/IJNAA.2021.22858.2422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, utilizing the technique of Petryshyn’s fixed point theorem in Banach algebra, we analyze the existence of solution for functional integral equations, which includes as special cases many functional integral equations that arise in various branches of non-linear analysis and its application. Finally, we introduce the numerical method formed by modified homotopy perturbation approach to resolving the problem with acceptable accuracy.\",\"PeriodicalId\":14240,\"journal\":{\"name\":\"International Journal of Nonlinear Analysis and Applications\",\"volume\":\"13 1\",\"pages\":\"1-28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22075/IJNAA.2021.22858.2422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22075/IJNAA.2021.22858.2422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

本文利用Banach代数中Petryshyn不动点定理的技巧,分析了泛函积分方程解的存在性,其中包括非线性分析的各个分支中出现的许多泛函积分方程的特例及其应用。最后,我们介绍了修正同伦摄动法形成的数值方法,以获得可接受的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solvability and numerical method for non-linear Volterra integral equations by using Petryshyn’s fixed point theorem
In this paper, utilizing the technique of Petryshyn’s fixed point theorem in Banach algebra, we analyze the existence of solution for functional integral equations, which includes as special cases many functional integral equations that arise in various branches of non-linear analysis and its application. Finally, we introduce the numerical method formed by modified homotopy perturbation approach to resolving the problem with acceptable accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
160
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信