{"title":"溶气素类毒素家族的细胞溶解、成孔毒素","authors":"O. Knapp, B. Stiles, M. Popoff","doi":"10.2174/1875414701003020053","DOIUrl":null,"url":null,"abstract":"Pore-forming toxins (PFTs) represent the largest known group of bacterial protein toxins to date. Membrane insertion and subsequent pore-formation occurs after initial binding to cell-surface receptor and oligomerization. Aerolysin, a toxin produced by the Gram-negative bacterium Aeromonas hydrophila and related species, belongs to the PFT group and shares a common mechanism of action involving -barrel structures resulting from the assembly of hairpins from individual toxin monomers into a heptamer. Aerolysin is also the name given to structurally and mechanistically related toxins called the aerolysin-like toxin family. A universal characteristic of this toxin family involves the diverse life forms that synthesize these proteins throughout Nature. Examples include: 1) epsilon-toxin and septicum-alpha-toxin produced by anaerobic, Gram-positive Clostridium species; 2) enterolobin by the Brazilian tree Enterolobium contortisiliquum; 3) a mushroom toxin Laetiporus sulphureus lectin (LSL); 4) mosquitocidal toxins (Mtxs) from the Gram-positive bacteria Bacillus sphaericus and parasporine-2 from Bacillus thuringiensis; and 6) hydralysins from the tiny aquatic animal Chlorohydra viridis. The following review provides an overview of the different members within the aerolysin-like toxin family. keywords: Pore-forming toxins, aerolysin, septicum-alpha-toxin, enterolobin, epsilon-toxin, Laetiporus sulphureus lectin.","PeriodicalId":90367,"journal":{"name":"The open toxinology journal","volume":"3 1","pages":"53-68"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"The Aerolysin-Like Toxin Family of Cytolytic, Pore-Forming Toxins~!2009-08-20~!2009-09-17~!2010-03-09~!\",\"authors\":\"O. Knapp, B. Stiles, M. Popoff\",\"doi\":\"10.2174/1875414701003020053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pore-forming toxins (PFTs) represent the largest known group of bacterial protein toxins to date. Membrane insertion and subsequent pore-formation occurs after initial binding to cell-surface receptor and oligomerization. Aerolysin, a toxin produced by the Gram-negative bacterium Aeromonas hydrophila and related species, belongs to the PFT group and shares a common mechanism of action involving -barrel structures resulting from the assembly of hairpins from individual toxin monomers into a heptamer. Aerolysin is also the name given to structurally and mechanistically related toxins called the aerolysin-like toxin family. A universal characteristic of this toxin family involves the diverse life forms that synthesize these proteins throughout Nature. Examples include: 1) epsilon-toxin and septicum-alpha-toxin produced by anaerobic, Gram-positive Clostridium species; 2) enterolobin by the Brazilian tree Enterolobium contortisiliquum; 3) a mushroom toxin Laetiporus sulphureus lectin (LSL); 4) mosquitocidal toxins (Mtxs) from the Gram-positive bacteria Bacillus sphaericus and parasporine-2 from Bacillus thuringiensis; and 6) hydralysins from the tiny aquatic animal Chlorohydra viridis. The following review provides an overview of the different members within the aerolysin-like toxin family. keywords: Pore-forming toxins, aerolysin, septicum-alpha-toxin, enterolobin, epsilon-toxin, Laetiporus sulphureus lectin.\",\"PeriodicalId\":90367,\"journal\":{\"name\":\"The open toxinology journal\",\"volume\":\"3 1\",\"pages\":\"53-68\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The open toxinology journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1875414701003020053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The open toxinology journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1875414701003020053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Aerolysin-Like Toxin Family of Cytolytic, Pore-Forming Toxins~!2009-08-20~!2009-09-17~!2010-03-09~!
Pore-forming toxins (PFTs) represent the largest known group of bacterial protein toxins to date. Membrane insertion and subsequent pore-formation occurs after initial binding to cell-surface receptor and oligomerization. Aerolysin, a toxin produced by the Gram-negative bacterium Aeromonas hydrophila and related species, belongs to the PFT group and shares a common mechanism of action involving -barrel structures resulting from the assembly of hairpins from individual toxin monomers into a heptamer. Aerolysin is also the name given to structurally and mechanistically related toxins called the aerolysin-like toxin family. A universal characteristic of this toxin family involves the diverse life forms that synthesize these proteins throughout Nature. Examples include: 1) epsilon-toxin and septicum-alpha-toxin produced by anaerobic, Gram-positive Clostridium species; 2) enterolobin by the Brazilian tree Enterolobium contortisiliquum; 3) a mushroom toxin Laetiporus sulphureus lectin (LSL); 4) mosquitocidal toxins (Mtxs) from the Gram-positive bacteria Bacillus sphaericus and parasporine-2 from Bacillus thuringiensis; and 6) hydralysins from the tiny aquatic animal Chlorohydra viridis. The following review provides an overview of the different members within the aerolysin-like toxin family. keywords: Pore-forming toxins, aerolysin, septicum-alpha-toxin, enterolobin, epsilon-toxin, Laetiporus sulphureus lectin.