Banach空间中Lipschitzian $J-$拟伪压缩映射的分裂公共不动点和零点问题

Q4 Mathematics
U. S. Jim, D. Igbokwe
{"title":"Banach空间中Lipschitzian $J-$拟伪压缩映射的分裂公共不动点和零点问题","authors":"U. S. Jim, D. Igbokwe","doi":"10.22075/IJNAA.2021.23332.2521","DOIUrl":null,"url":null,"abstract":"A split common fixed point and null point problem (SCFPNPP) which includes the split common fixed point problem, the split common null point problem and other problems related to the fixed point problem and the null point problem is studied. We introduce a Halpern--Ishikawa type algorithm for studying the split common fixed point and null point problem for Lipschitzian $J-$quasi pseudocontractive operators and maximal monotone operators in real Banach spaces. Moreover, we establish a strong convergence results under some suitable conditions and reduce our main result to the above-mentioned problems. Finally, we applied the study to split feasibility problem (FEP), split equilibrium problem (SEP), split variational inequality problem (SVIP) and split optimization problem (SOP).","PeriodicalId":14240,"journal":{"name":"International Journal of Nonlinear Analysis and Applications","volume":"71 1","pages":"1827-1853"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A split common fixed point and null point problem for Lipschitzian $J-$quasi pseudocontractive mappings in Banach spaces\",\"authors\":\"U. S. Jim, D. Igbokwe\",\"doi\":\"10.22075/IJNAA.2021.23332.2521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A split common fixed point and null point problem (SCFPNPP) which includes the split common fixed point problem, the split common null point problem and other problems related to the fixed point problem and the null point problem is studied. We introduce a Halpern--Ishikawa type algorithm for studying the split common fixed point and null point problem for Lipschitzian $J-$quasi pseudocontractive operators and maximal monotone operators in real Banach spaces. Moreover, we establish a strong convergence results under some suitable conditions and reduce our main result to the above-mentioned problems. Finally, we applied the study to split feasibility problem (FEP), split equilibrium problem (SEP), split variational inequality problem (SVIP) and split optimization problem (SOP).\",\"PeriodicalId\":14240,\"journal\":{\"name\":\"International Journal of Nonlinear Analysis and Applications\",\"volume\":\"71 1\",\"pages\":\"1827-1853\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22075/IJNAA.2021.23332.2521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22075/IJNAA.2021.23332.2521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

研究了一种分割公共不动点和零点问题(SCFPNPP),它包括分割公共不动点问题、分割公共零点问题以及与不动点和零点问题相关的其他问题。引入了一种Halpern—Ishikawa型算法,用于研究实数Banach空间中Lipschitzian $J-$拟拟压缩算子和极大单调算子的分裂公共不动点和零点问题。此外,在一些合适的条件下,我们建立了一个强收敛结果,并将我们的主要结果简化为上述问题。最后,我们将研究结果应用于分割可行性问题(FEP)、分割均衡问题(SEP)、分割变分不等式问题(SVIP)和分割优化问题(SOP)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A split common fixed point and null point problem for Lipschitzian $J-$quasi pseudocontractive mappings in Banach spaces
A split common fixed point and null point problem (SCFPNPP) which includes the split common fixed point problem, the split common null point problem and other problems related to the fixed point problem and the null point problem is studied. We introduce a Halpern--Ishikawa type algorithm for studying the split common fixed point and null point problem for Lipschitzian $J-$quasi pseudocontractive operators and maximal monotone operators in real Banach spaces. Moreover, we establish a strong convergence results under some suitable conditions and reduce our main result to the above-mentioned problems. Finally, we applied the study to split feasibility problem (FEP), split equilibrium problem (SEP), split variational inequality problem (SVIP) and split optimization problem (SOP).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
160
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信