平面微分系统的最大极限环数

Q4 Mathematics
Sana Karfes, E. Hadidi, M. Kerker
{"title":"平面微分系统的最大极限环数","authors":"Sana Karfes, E. Hadidi, M. Kerker","doi":"10.22075/IJNAA.2021.23049.2468","DOIUrl":null,"url":null,"abstract":"In this work, we are interested in the study of the limit cycles of a perturbed differential system in  (mathbb{R}^2), given as follows[left{begin{array}{l}dot{x}=y, \\dot{y}=-x-varepsilon (1+sin ^{m}(theta ))psi (x,y),%end{array}%right.]where (varepsilon) is small enough, (m) is a non-negative integer, (tan (theta )=y/x), and (psi (x,y)) is a real polynomial of degree (ngeq1). We use the averaging theory of first-order to provide an upper bound for the maximum number of limit cycles. In the end, we present some numerical examples to illustrate the theoretical results.","PeriodicalId":14240,"journal":{"name":"International Journal of Nonlinear Analysis and Applications","volume":"13 1","pages":"1462-1478"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the maximum number of limit cycles of a planar differential system\",\"authors\":\"Sana Karfes, E. Hadidi, M. Kerker\",\"doi\":\"10.22075/IJNAA.2021.23049.2468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we are interested in the study of the limit cycles of a perturbed differential system in  (mathbb{R}^2), given as follows[left{begin{array}{l}dot{x}=y, \\\\dot{y}=-x-varepsilon (1+sin ^{m}(theta ))psi (x,y),%end{array}%right.]where (varepsilon) is small enough, (m) is a non-negative integer, (tan (theta )=y/x), and (psi (x,y)) is a real polynomial of degree (ngeq1). We use the averaging theory of first-order to provide an upper bound for the maximum number of limit cycles. In the end, we present some numerical examples to illustrate the theoretical results.\",\"PeriodicalId\":14240,\"journal\":{\"name\":\"International Journal of Nonlinear Analysis and Applications\",\"volume\":\"13 1\",\"pages\":\"1462-1478\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22075/IJNAA.2021.23049.2468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22075/IJNAA.2021.23049.2468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们对(mathbb{R}^2)中摄动微分系统的极限环的研究感兴趣,给出如下[left{begin{array}{l}dot{x}=y, \dot{y}=-x-varepsilon (1+sin ^{m}(θ))psi (x,y),%end{array}%right。],其中(varepsilon)足够小,(m)是非负整数,(tan (θ)=y/x), (psi (x,y))是次(ngeq1)的实多项式。利用一阶平均理论给出了极限环的最大数目的上界。最后,给出了一些数值算例来说明理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the maximum number of limit cycles of a planar differential system
In this work, we are interested in the study of the limit cycles of a perturbed differential system in  (mathbb{R}^2), given as follows[left{begin{array}{l}dot{x}=y, \dot{y}=-x-varepsilon (1+sin ^{m}(theta ))psi (x,y),%end{array}%right.]where (varepsilon) is small enough, (m) is a non-negative integer, (tan (theta )=y/x), and (psi (x,y)) is a real polynomial of degree (ngeq1). We use the averaging theory of first-order to provide an upper bound for the maximum number of limit cycles. In the end, we present some numerical examples to illustrate the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
160
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信