Kayoko Tono-Okada, Y. Okada, M. Masuda, Akio Hoshi, A. Akatsuka, A. Teramoto, K. Abe, T. Tamaki
{"title":"用透明质酸胶原胶囊培养骨骼肌源性干细胞的微三维培养系统","authors":"Kayoko Tono-Okada, Y. Okada, M. Masuda, Akio Hoshi, A. Akatsuka, A. Teramoto, K. Abe, T. Tamaki","doi":"10.2174/1875043501003010018","DOIUrl":null,"url":null,"abstract":"In order to hold non-adhesive type cells while maintaining cellular interactions and various autocrine/paracrine factors, a micro 3D culture system using Hyaluronan (HA)-type I collagen capsules was investigated as a possible scaffold for cell transplantation. Skeletal muscle-derived enzymatically extracted cells, which include numerous non-adhesive type stem cells were cultured in conventional liquid DMEM with and without encapsulation in HA-collagen capsules, and cellular proliferation/differentiation were compared. Results indicate that encapsulation does not disturb any cellular proliferation/differentiation after 7 days of culture. Gradual increases in vascular endothelial growth factor are also confirmed in HA-collagen culture, which may be induced by slower diffusion of autocrine/paracrine factors in the capsule and may benefit cellular proliferation/differentiation. Cell-holding capacity of encapsulation was also tested by in vivo transplantation into wide-open muscle scars without fascia. Encapsulation significantly contributes to higher donor cell implantation ratio and damaged muscle mass recovery than that of non-capsulation.","PeriodicalId":88761,"journal":{"name":"The open tissue engineering and regenerative medicine journal","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2010-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Micro 3D Culture System using Hyaluronan-Collagen Capsule for Skeletal Muscle-Derived Stem Cells\",\"authors\":\"Kayoko Tono-Okada, Y. Okada, M. Masuda, Akio Hoshi, A. Akatsuka, A. Teramoto, K. Abe, T. Tamaki\",\"doi\":\"10.2174/1875043501003010018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to hold non-adhesive type cells while maintaining cellular interactions and various autocrine/paracrine factors, a micro 3D culture system using Hyaluronan (HA)-type I collagen capsules was investigated as a possible scaffold for cell transplantation. Skeletal muscle-derived enzymatically extracted cells, which include numerous non-adhesive type stem cells were cultured in conventional liquid DMEM with and without encapsulation in HA-collagen capsules, and cellular proliferation/differentiation were compared. Results indicate that encapsulation does not disturb any cellular proliferation/differentiation after 7 days of culture. Gradual increases in vascular endothelial growth factor are also confirmed in HA-collagen culture, which may be induced by slower diffusion of autocrine/paracrine factors in the capsule and may benefit cellular proliferation/differentiation. Cell-holding capacity of encapsulation was also tested by in vivo transplantation into wide-open muscle scars without fascia. Encapsulation significantly contributes to higher donor cell implantation ratio and damaged muscle mass recovery than that of non-capsulation.\",\"PeriodicalId\":88761,\"journal\":{\"name\":\"The open tissue engineering and regenerative medicine journal\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The open tissue engineering and regenerative medicine journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1875043501003010018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The open tissue engineering and regenerative medicine journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1875043501003010018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Micro 3D Culture System using Hyaluronan-Collagen Capsule for Skeletal Muscle-Derived Stem Cells
In order to hold non-adhesive type cells while maintaining cellular interactions and various autocrine/paracrine factors, a micro 3D culture system using Hyaluronan (HA)-type I collagen capsules was investigated as a possible scaffold for cell transplantation. Skeletal muscle-derived enzymatically extracted cells, which include numerous non-adhesive type stem cells were cultured in conventional liquid DMEM with and without encapsulation in HA-collagen capsules, and cellular proliferation/differentiation were compared. Results indicate that encapsulation does not disturb any cellular proliferation/differentiation after 7 days of culture. Gradual increases in vascular endothelial growth factor are also confirmed in HA-collagen culture, which may be induced by slower diffusion of autocrine/paracrine factors in the capsule and may benefit cellular proliferation/differentiation. Cell-holding capacity of encapsulation was also tested by in vivo transplantation into wide-open muscle scars without fascia. Encapsulation significantly contributes to higher donor cell implantation ratio and damaged muscle mass recovery than that of non-capsulation.