利用Chou的伪氨基酸组成和机器学习方法预测抗病毒肽

Q3 Computer Science
M. Zare, H. Mohabatkar, Fatemeh Faramarzi, Majid Mohammad Beigi, M. Behbahani
{"title":"利用Chou的伪氨基酸组成和机器学习方法预测抗病毒肽","authors":"M. Zare, H. Mohabatkar, Fatemeh Faramarzi, Majid Mohammad Beigi, M. Behbahani","doi":"10.2174/1875036201509010013","DOIUrl":null,"url":null,"abstract":"Traditional antiviral therapies are expensive, limitedly available, and cause several side effects. Currently, de- signing antiviral peptides is very important, because these peptides interfere with the key stage of virus life cycle. Most of the antiviral peptides are derived from viral proteins for example peptide derived from HIV-1 capsid protein. Because of the importance of these peptides, in this study the concept of pseudo-amino acid composition (PseAAC) and machine learning methods are used to classify or identify antiviral peptides.","PeriodicalId":38956,"journal":{"name":"Open Bioinformatics Journal","volume":"9 1","pages":"13-19"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Using Chou’s Pseudo Amino Acid Composition and Machine LearningMethod to Predict the Antiviral Peptides\",\"authors\":\"M. Zare, H. Mohabatkar, Fatemeh Faramarzi, Majid Mohammad Beigi, M. Behbahani\",\"doi\":\"10.2174/1875036201509010013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional antiviral therapies are expensive, limitedly available, and cause several side effects. Currently, de- signing antiviral peptides is very important, because these peptides interfere with the key stage of virus life cycle. Most of the antiviral peptides are derived from viral proteins for example peptide derived from HIV-1 capsid protein. Because of the importance of these peptides, in this study the concept of pseudo-amino acid composition (PseAAC) and machine learning methods are used to classify or identify antiviral peptides.\",\"PeriodicalId\":38956,\"journal\":{\"name\":\"Open Bioinformatics Journal\",\"volume\":\"9 1\",\"pages\":\"13-19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Bioinformatics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1875036201509010013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Bioinformatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1875036201509010013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 21

摘要

传统的抗病毒疗法价格昂贵,可用性有限,并且会产生一些副作用。目前,设计抗病毒肽是非常重要的,因为这些肽干扰病毒生命周期的关键阶段。大多数抗病毒肽来源于病毒蛋白,例如来源于HIV-1衣壳蛋白的肽。由于这些肽的重要性,在本研究中,伪氨基酸组成(PseAAC)的概念和机器学习方法被用于分类或识别抗病毒肽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Chou’s Pseudo Amino Acid Composition and Machine LearningMethod to Predict the Antiviral Peptides
Traditional antiviral therapies are expensive, limitedly available, and cause several side effects. Currently, de- signing antiviral peptides is very important, because these peptides interfere with the key stage of virus life cycle. Most of the antiviral peptides are derived from viral proteins for example peptide derived from HIV-1 capsid protein. Because of the importance of these peptides, in this study the concept of pseudo-amino acid composition (PseAAC) and machine learning methods are used to classify or identify antiviral peptides.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Bioinformatics Journal
Open Bioinformatics Journal Computer Science-Computer Science (miscellaneous)
CiteScore
2.40
自引率
0.00%
发文量
4
期刊介绍: The Open Bioinformatics Journal is an Open Access online journal, which publishes research articles, reviews/mini-reviews, letters, clinical trial studies and guest edited single topic issues in all areas of bioinformatics and computational biology. The coverage includes biomedicine, focusing on large data acquisition, analysis and curation, computational and statistical methods for the modeling and analysis of biological data, and descriptions of new algorithms and databases. The Open Bioinformatics Journal, a peer reviewed journal, is an important and reliable source of current information on the developments in the field. The emphasis will be on publishing quality articles rapidly and freely available worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信