用体积分布不对称指数表征蛋白质形状

Q3 Computer Science
Nicole C. Arrigo, P. Paci, L. Paola, D. Santoni, M. Ruvo, A. Giuliani, F. Castiglione
{"title":"用体积分布不对称指数表征蛋白质形状","authors":"Nicole C. Arrigo, P. Paci, L. Paola, D. Santoni, M. Ruvo, A. Giuliani, F. Castiglione","doi":"10.2174/1875036201206010020","DOIUrl":null,"url":null,"abstract":"A fully quantitative shape index relying upon the asymmetry of mass distribution of protein molecules along the three space dimensions is proposed. Multidimensional statistical analysis, based on principal component extraction and subsequent linear discriminant analysis, showed the presence of three major 'attractor forms' roughly correspondent to rod-like, discoidal and spherical shapes. This classification of protein shapes was in turn demonstrated to be strictly connected with topological features of proteins, as emerging from complex network invariants of their contact maps.","PeriodicalId":38956,"journal":{"name":"Open Bioinformatics Journal","volume":"6 1","pages":"20-27"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Characterizing Protein Shape by a Volume Distribution Asymmetry Index\",\"authors\":\"Nicole C. Arrigo, P. Paci, L. Paola, D. Santoni, M. Ruvo, A. Giuliani, F. Castiglione\",\"doi\":\"10.2174/1875036201206010020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fully quantitative shape index relying upon the asymmetry of mass distribution of protein molecules along the three space dimensions is proposed. Multidimensional statistical analysis, based on principal component extraction and subsequent linear discriminant analysis, showed the presence of three major 'attractor forms' roughly correspondent to rod-like, discoidal and spherical shapes. This classification of protein shapes was in turn demonstrated to be strictly connected with topological features of proteins, as emerging from complex network invariants of their contact maps.\",\"PeriodicalId\":38956,\"journal\":{\"name\":\"Open Bioinformatics Journal\",\"volume\":\"6 1\",\"pages\":\"20-27\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Bioinformatics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1875036201206010020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Bioinformatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1875036201206010020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 3

摘要

基于蛋白质分子质量分布在三维空间上的不对称性,提出了一种完全定量的形状指数。多维统计分析,基于主成分提取和随后的线性判别分析,显示了三种主要的“吸引子形式”的存在,大致对应于棒状,盘状和球形。这种蛋白质形状的分类反过来又被证明与蛋白质的拓扑特征密切相关,因为它们是从它们的接触图的复杂网络不变量中出现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizing Protein Shape by a Volume Distribution Asymmetry Index
A fully quantitative shape index relying upon the asymmetry of mass distribution of protein molecules along the three space dimensions is proposed. Multidimensional statistical analysis, based on principal component extraction and subsequent linear discriminant analysis, showed the presence of three major 'attractor forms' roughly correspondent to rod-like, discoidal and spherical shapes. This classification of protein shapes was in turn demonstrated to be strictly connected with topological features of proteins, as emerging from complex network invariants of their contact maps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Bioinformatics Journal
Open Bioinformatics Journal Computer Science-Computer Science (miscellaneous)
CiteScore
2.40
自引率
0.00%
发文量
4
期刊介绍: The Open Bioinformatics Journal is an Open Access online journal, which publishes research articles, reviews/mini-reviews, letters, clinical trial studies and guest edited single topic issues in all areas of bioinformatics and computational biology. The coverage includes biomedicine, focusing on large data acquisition, analysis and curation, computational and statistical methods for the modeling and analysis of biological data, and descriptions of new algorithms and databases. The Open Bioinformatics Journal, a peer reviewed journal, is an important and reliable source of current information on the developments in the field. The emphasis will be on publishing quality articles rapidly and freely available worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信