广义Beatty序列与互补三元组

Q4 Mathematics
J. Allouche, F. Michel Dekking
{"title":"广义Beatty序列与互补三元组","authors":"J. Allouche, F. Michel Dekking","doi":"10.2140/moscow.2019.8.325","DOIUrl":null,"url":null,"abstract":"A generalized Beatty sequence is a sequence $V$ defined by $V(n)=p\\lfloor{n\\alpha}\\rfloor+qn +r$, for $n=1,2,\\dots$, where $\\alpha$ is a real number, and $p,q,r$ are integers. These occur in several problems, as for instance in homomorphic embeddings of Sturmian languages in the integers. Our results are for the case that $\\alpha$ is the golden mean, but we show how some results generalise to arbitrary quadratic irrationals. We mainly consider the following question: For which sixtuples of integers $p,q,r,s,t,u$ are the two sequences $V=(p\\lfloor{n\\alpha}\\rfloor+qn +r)$ and $W=(s\\lfloor{n\\alpha}\\rfloor+tn +u)$ complementary sequences? \nWe also study complementary triples, i.e., three sequences $V_i=(p_i\\lfloor{n\\alpha}\\rfloor+q_in+r_i), \\:i=1,2,3$, with the property that the sets they determine are disjoint with union the positive integers.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/moscow.2019.8.325","citationCount":"12","resultStr":"{\"title\":\"Generalized Beatty sequences and complementary triples\",\"authors\":\"J. Allouche, F. Michel Dekking\",\"doi\":\"10.2140/moscow.2019.8.325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A generalized Beatty sequence is a sequence $V$ defined by $V(n)=p\\\\lfloor{n\\\\alpha}\\\\rfloor+qn +r$, for $n=1,2,\\\\dots$, where $\\\\alpha$ is a real number, and $p,q,r$ are integers. These occur in several problems, as for instance in homomorphic embeddings of Sturmian languages in the integers. Our results are for the case that $\\\\alpha$ is the golden mean, but we show how some results generalise to arbitrary quadratic irrationals. We mainly consider the following question: For which sixtuples of integers $p,q,r,s,t,u$ are the two sequences $V=(p\\\\lfloor{n\\\\alpha}\\\\rfloor+qn +r)$ and $W=(s\\\\lfloor{n\\\\alpha}\\\\rfloor+tn +u)$ complementary sequences? \\nWe also study complementary triples, i.e., three sequences $V_i=(p_i\\\\lfloor{n\\\\alpha}\\\\rfloor+q_in+r_i), \\\\:i=1,2,3$, with the property that the sets they determine are disjoint with union the positive integers.\",\"PeriodicalId\":36590,\"journal\":{\"name\":\"Moscow Journal of Combinatorics and Number Theory\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/moscow.2019.8.325\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow Journal of Combinatorics and Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/moscow.2019.8.325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2019.8.325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 12

摘要

广义Beatty序列是由$V(n)=p\lfloor{n\alpha}\rfloor+qn +r$定义的序列$V$,对于$n=1,2,\dots$,其中$\alpha$是实数,$p,q,r$是整数。这种情况出现在一些问题中,例如在整数中图尔图曼语言的同态嵌入。我们的结果是针对$\alpha$是黄金平均数的情况,但我们展示了一些结果如何推广到任意二次无理数。我们主要考虑以下问题:对于哪个整数的六元组$p,q,r,s,t,u$,两个序列$V=(p\lfloor{n\alpha}\rfloor+qn +r)$和$W=(s\lfloor{n\alpha}\rfloor+tn +u)$是互补序列?我们还研究了互补三元组,即三个序列$V_i=(p_i\lfloor{n\alpha}\rfloor+q_in+r_i), \:i=1,2,3$,它们所确定的集合是不相交且正整数并集的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Beatty sequences and complementary triples
A generalized Beatty sequence is a sequence $V$ defined by $V(n)=p\lfloor{n\alpha}\rfloor+qn +r$, for $n=1,2,\dots$, where $\alpha$ is a real number, and $p,q,r$ are integers. These occur in several problems, as for instance in homomorphic embeddings of Sturmian languages in the integers. Our results are for the case that $\alpha$ is the golden mean, but we show how some results generalise to arbitrary quadratic irrationals. We mainly consider the following question: For which sixtuples of integers $p,q,r,s,t,u$ are the two sequences $V=(p\lfloor{n\alpha}\rfloor+qn +r)$ and $W=(s\lfloor{n\alpha}\rfloor+tn +u)$ complementary sequences? We also study complementary triples, i.e., three sequences $V_i=(p_i\lfloor{n\alpha}\rfloor+q_in+r_i), \:i=1,2,3$, with the property that the sets they determine are disjoint with union the positive integers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moscow Journal of Combinatorics and Number Theory
Moscow Journal of Combinatorics and Number Theory Mathematics-Algebra and Number Theory
CiteScore
0.80
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信