{"title":"具有指数级大接吻数的晶格","authors":"S. Vladut","doi":"10.2140/MOSCOW.2019.8.163","DOIUrl":null,"url":null,"abstract":"We construct a sequence of lattices $\\{L_{n_i}\\subset \\mathbb R^{n_i}\\}$ for $n_i\\longrightarrow\\infty$, with exponentially large kissing numbers, namely, $\\log_2\\tau(L_{n_i})> 0.0338\\cdot n_i -o(n_i)$. We also show that the maximum lattice kissing number $ \\tau^l_{n}$ in $n$ dimensions verifies $\\log_2\\tau^l_{n}> 0.0219\\cdot n -o(n)$.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/MOSCOW.2019.8.163","citationCount":"17","resultStr":"{\"title\":\"Lattices with exponentially large kissing numbers\",\"authors\":\"S. Vladut\",\"doi\":\"10.2140/MOSCOW.2019.8.163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a sequence of lattices $\\\\{L_{n_i}\\\\subset \\\\mathbb R^{n_i}\\\\}$ for $n_i\\\\longrightarrow\\\\infty$, with exponentially large kissing numbers, namely, $\\\\log_2\\\\tau(L_{n_i})> 0.0338\\\\cdot n_i -o(n_i)$. We also show that the maximum lattice kissing number $ \\\\tau^l_{n}$ in $n$ dimensions verifies $\\\\log_2\\\\tau^l_{n}> 0.0219\\\\cdot n -o(n)$.\",\"PeriodicalId\":36590,\"journal\":{\"name\":\"Moscow Journal of Combinatorics and Number Theory\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/MOSCOW.2019.8.163\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow Journal of Combinatorics and Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/MOSCOW.2019.8.163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/MOSCOW.2019.8.163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 17
摘要
我们为$n_i\longrightarrow\infty$构造了一个格序列$\{L_{n_i}\subset \mathbb R^{n_i}\}$,它具有指数级大的亲吻数,即$\log_2\tau(L_{n_i})> 0.0338\cdot n_i -o(n_i)$。我们还证明了$n$维的最大晶格亲和数$ \tau^l_{n}$验证了$\log_2\tau^l_{n}> 0.0219\cdot n -o(n)$。
We construct a sequence of lattices $\{L_{n_i}\subset \mathbb R^{n_i}\}$ for $n_i\longrightarrow\infty$, with exponentially large kissing numbers, namely, $\log_2\tau(L_{n_i})> 0.0338\cdot n_i -o(n_i)$. We also show that the maximum lattice kissing number $ \tau^l_{n}$ in $n$ dimensions verifies $\log_2\tau^l_{n}> 0.0219\cdot n -o(n)$.