1939年前东普鲁士白鹳种群栖息地的空间预测模型

Q3 Agricultural and Biological Sciences
Claudia Wickert, D. Wallschlager, F. Huettmann
{"title":"1939年前东普鲁士白鹳种群栖息地的空间预测模型","authors":"Claudia Wickert, D. Wallschlager, F. Huettmann","doi":"10.2174/1874453201003010001","DOIUrl":null,"url":null,"abstract":"Historic information is often crucial for assessing changes and drivers for wildlife and habitat changes although it is often plagued with statistically poor quality. Here we developed three habitat models on two different scales for 1939 for the white stork (Ciconia ciconia) in the region of former East Prussia. We used a geographical information system and a statistical modeling algorithm that comes from the disciplines of machine-learning and data mining (TreeNet). The oc- currence of white stork nesting grounds is mainly defined by the variables 'distance to forest', 'distance to/density of set- tlement', 'distance to pasture' and 'distance to coastline'. The models present for the first time a quantitative predictive distribution estimate for East Prussia. They are a sound foundation but could be further improved by more data regarding the structure of the habitat and more exact spatially explicit information on the location of white stork nesting sites.","PeriodicalId":39058,"journal":{"name":"Open Ornithology Journal","volume":"3 1","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Spatially Predictive Habitat Modeling of a White Stork (Ciconia Ciconia) Population in Former East Prussia in 1939~!2009-08-03~!2009-10-15~!2010-03-09~!\",\"authors\":\"Claudia Wickert, D. Wallschlager, F. Huettmann\",\"doi\":\"10.2174/1874453201003010001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Historic information is often crucial for assessing changes and drivers for wildlife and habitat changes although it is often plagued with statistically poor quality. Here we developed three habitat models on two different scales for 1939 for the white stork (Ciconia ciconia) in the region of former East Prussia. We used a geographical information system and a statistical modeling algorithm that comes from the disciplines of machine-learning and data mining (TreeNet). The oc- currence of white stork nesting grounds is mainly defined by the variables 'distance to forest', 'distance to/density of set- tlement', 'distance to pasture' and 'distance to coastline'. The models present for the first time a quantitative predictive distribution estimate for East Prussia. They are a sound foundation but could be further improved by more data regarding the structure of the habitat and more exact spatially explicit information on the location of white stork nesting sites.\",\"PeriodicalId\":39058,\"journal\":{\"name\":\"Open Ornithology Journal\",\"volume\":\"3 1\",\"pages\":\"1-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Ornithology Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874453201003010001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ornithology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874453201003010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 9

摘要

历史信息对于评估野生动物和栖息地变化的变化和驱动因素往往至关重要,尽管它经常受到统计质量差的困扰。在这里,我们为前东普鲁士地区的白鹳(Ciconia Ciconia)开发了1939年两种不同尺度的三种栖息地模型。我们使用了一个地理信息系统和一个来自机器学习和数据挖掘(TreeNet)学科的统计建模算法。白鹳巢地的出现主要由“到森林的距离”、“到集合元素的距离/密度”、“到牧场的距离”和“到海岸线的距离”等变量决定。该模型首次提出了东普鲁士的定量预测分布估计。它们是一个坚实的基础,但可以通过更多关于栖息地结构的数据和更准确的白鹳筑巢地点的空间明确信息进一步改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatially Predictive Habitat Modeling of a White Stork (Ciconia Ciconia) Population in Former East Prussia in 1939~!2009-08-03~!2009-10-15~!2010-03-09~!
Historic information is often crucial for assessing changes and drivers for wildlife and habitat changes although it is often plagued with statistically poor quality. Here we developed three habitat models on two different scales for 1939 for the white stork (Ciconia ciconia) in the region of former East Prussia. We used a geographical information system and a statistical modeling algorithm that comes from the disciplines of machine-learning and data mining (TreeNet). The oc- currence of white stork nesting grounds is mainly defined by the variables 'distance to forest', 'distance to/density of set- tlement', 'distance to pasture' and 'distance to coastline'. The models present for the first time a quantitative predictive distribution estimate for East Prussia. They are a sound foundation but could be further improved by more data regarding the structure of the habitat and more exact spatially explicit information on the location of white stork nesting sites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Ornithology Journal
Open Ornithology Journal Agricultural and Biological Sciences-Animal Science and Zoology
自引率
0.00%
发文量
0
期刊介绍: The Open Ornithology Journal is an Open Access online journal, which publishes research articles, reviews/mini-reviews, letters and guest edited single topic issues in all important areas of ornithology including avian behaviour,genetics, phylogeography , conservation, demography, ecology, evolution, and morphology. The Open Ornithology Journal, a peer-reviewed journal, is an important and reliable source of current information on developments in the field. The emphasis will be on publishing quality papers rapidly and making them freely available to researchers worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信