Ashish D. Patel, D. Patel, Drashti Shah, Krishi Patel, Ayush Patel, Tushar Bambharoliya, Anjali Mahavar
{"title":"吡咯衍生物合成的最新进展","authors":"Ashish D. Patel, D. Patel, Drashti Shah, Krishi Patel, Ayush Patel, Tushar Bambharoliya, Anjali Mahavar","doi":"10.2174/1570193x20666230530161009","DOIUrl":null,"url":null,"abstract":"\n\nPyrrole is a versatile heterocyclic moiety exhibiting a wide range of pharmacological actions with high therapeutic value. The importance of pyrrole in the pharmaceutical field lies in its versatility, selectivity, and biocompatibility, and these properties make it a valuable tool for drug design and development. The pyrrole moiety is a fundamental building block for many biologically active molecules and has gathered significant attention in the fields of medicinal and organic chemistry; hence, its synthesis has been a crucial area for research. There are various conventional as well as modern approaches to acquiring a series of pyrrole scaffolds, with a wide range of attractive features and drawbacks pertaining to each approach. An extensive amount of literature must be studied to compare the best synthetic routes. This article highlights the applications of pyrrole derivatives in various fields, such as drug discovery, material science, and catalysis, and provides an overview of modern synthetic pathways that include metals, nanomaterials, and complex heterogeneous catalysed methods for pyrrole derivatives. Special emphasis is given to the use of green chemistry principles like green solvent-based methods, microwave-aided methods, and solvent-free methods in the synthesis of pyrroles, with the recent developments and prospects in the synthetic and organic chemistry fields. Overall, this review article provides a comprehensive overview of the synthesis of pyrroles and complies with all the possible developments in the synthetic routes for pyrroles within 2015–2022. Among all, the reactions catalysed by proline, copper oxides, and oxones have been shown to be the most effective synthetic route for pyrrole derivatives at mild reaction conditions and with excellent yields. This information will be helpful for researchers interested in the development of new pyrrole-based compounds. The categorization in this review provides an easy means for the reader to rationally select the best possible synthetic method for pyrrole derivatives.\n","PeriodicalId":18632,"journal":{"name":"Mini-reviews in Organic Chemistry","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Progress for the Synthesis of Pyrrole Derivatives – An Update\",\"authors\":\"Ashish D. Patel, D. Patel, Drashti Shah, Krishi Patel, Ayush Patel, Tushar Bambharoliya, Anjali Mahavar\",\"doi\":\"10.2174/1570193x20666230530161009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nPyrrole is a versatile heterocyclic moiety exhibiting a wide range of pharmacological actions with high therapeutic value. The importance of pyrrole in the pharmaceutical field lies in its versatility, selectivity, and biocompatibility, and these properties make it a valuable tool for drug design and development. The pyrrole moiety is a fundamental building block for many biologically active molecules and has gathered significant attention in the fields of medicinal and organic chemistry; hence, its synthesis has been a crucial area for research. There are various conventional as well as modern approaches to acquiring a series of pyrrole scaffolds, with a wide range of attractive features and drawbacks pertaining to each approach. An extensive amount of literature must be studied to compare the best synthetic routes. This article highlights the applications of pyrrole derivatives in various fields, such as drug discovery, material science, and catalysis, and provides an overview of modern synthetic pathways that include metals, nanomaterials, and complex heterogeneous catalysed methods for pyrrole derivatives. Special emphasis is given to the use of green chemistry principles like green solvent-based methods, microwave-aided methods, and solvent-free methods in the synthesis of pyrroles, with the recent developments and prospects in the synthetic and organic chemistry fields. Overall, this review article provides a comprehensive overview of the synthesis of pyrroles and complies with all the possible developments in the synthetic routes for pyrroles within 2015–2022. Among all, the reactions catalysed by proline, copper oxides, and oxones have been shown to be the most effective synthetic route for pyrrole derivatives at mild reaction conditions and with excellent yields. This information will be helpful for researchers interested in the development of new pyrrole-based compounds. The categorization in this review provides an easy means for the reader to rationally select the best possible synthetic method for pyrrole derivatives.\\n\",\"PeriodicalId\":18632,\"journal\":{\"name\":\"Mini-reviews in Organic Chemistry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mini-reviews in Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2174/1570193x20666230530161009\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mini-reviews in Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/1570193x20666230530161009","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Recent Progress for the Synthesis of Pyrrole Derivatives – An Update
Pyrrole is a versatile heterocyclic moiety exhibiting a wide range of pharmacological actions with high therapeutic value. The importance of pyrrole in the pharmaceutical field lies in its versatility, selectivity, and biocompatibility, and these properties make it a valuable tool for drug design and development. The pyrrole moiety is a fundamental building block for many biologically active molecules and has gathered significant attention in the fields of medicinal and organic chemistry; hence, its synthesis has been a crucial area for research. There are various conventional as well as modern approaches to acquiring a series of pyrrole scaffolds, with a wide range of attractive features and drawbacks pertaining to each approach. An extensive amount of literature must be studied to compare the best synthetic routes. This article highlights the applications of pyrrole derivatives in various fields, such as drug discovery, material science, and catalysis, and provides an overview of modern synthetic pathways that include metals, nanomaterials, and complex heterogeneous catalysed methods for pyrrole derivatives. Special emphasis is given to the use of green chemistry principles like green solvent-based methods, microwave-aided methods, and solvent-free methods in the synthesis of pyrroles, with the recent developments and prospects in the synthetic and organic chemistry fields. Overall, this review article provides a comprehensive overview of the synthesis of pyrroles and complies with all the possible developments in the synthetic routes for pyrroles within 2015–2022. Among all, the reactions catalysed by proline, copper oxides, and oxones have been shown to be the most effective synthetic route for pyrrole derivatives at mild reaction conditions and with excellent yields. This information will be helpful for researchers interested in the development of new pyrrole-based compounds. The categorization in this review provides an easy means for the reader to rationally select the best possible synthetic method for pyrrole derivatives.
期刊介绍:
Mini-Reviews in Organic Chemistry is a peer reviewed journal which publishes original reviews on all areas of organic chemistry including organic synthesis, bioorganic and medicinal chemistry, natural product chemistry, molecular recognition, and physical organic chemistry. The emphasis will be on publishing quality papers very rapidly, without any charges.
The journal encourages submission of reviews on emerging fields of organic chemistry including:
Bioorganic Chemistry
Carbohydrate Chemistry
Chemical Biology
Chemical Process Research
Computational Organic Chemistry
Development of Synthetic Methodologies
Functional Organic Materials
Heterocyclic Chemistry
Macromolecular Chemistry
Natural Products Isolation And Synthesis
New Synthetic Methodology
Organic Reactions
Organocatalysis
Organometallic Chemistry
Theoretical Organic Chemistry
Polymer Chemistry
Stereochemistry
Structural Investigations
Supramolecular Chemistry