互信息是Copula熵

IF 5.2 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Ma Jian (马健), Sun Zengqi (孙增圻)
{"title":"互信息是Copula熵","authors":"Ma Jian (马健),&nbsp;Sun Zengqi (孙增圻)","doi":"10.1016/S1007-0214(11)70008-6","DOIUrl":null,"url":null,"abstract":"<div><p>Mutual information (MI) is a basic concept in information theory. Therefore, estimates of the MI are fundamentally important in most information theory applications. This paper provides a new way of understanding and estimating the MI using the copula function. First, the entropy of the copula, named the copula entropy, is defined as a measure of the dependence uncertainty represented by the copula function and then the MI is shown to be equivalent to the negative copula entropy. With this equivalence, the MI can be estimated by first estimating the empirical copula and then estimating the entropy of the empirical copula. Thus, the MI estimate is an estimation of the entropy, which reduces the complexity and computational requirements. Tests show that the method is more effective than the traditional method.</p></div>","PeriodicalId":60306,"journal":{"name":"Tsinghua Science and Technology","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2011-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1007-0214(11)70008-6","citationCount":"124","resultStr":"{\"title\":\"Mutual Information Is Copula Entropy\",\"authors\":\"Ma Jian (马健),&nbsp;Sun Zengqi (孙增圻)\",\"doi\":\"10.1016/S1007-0214(11)70008-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mutual information (MI) is a basic concept in information theory. Therefore, estimates of the MI are fundamentally important in most information theory applications. This paper provides a new way of understanding and estimating the MI using the copula function. First, the entropy of the copula, named the copula entropy, is defined as a measure of the dependence uncertainty represented by the copula function and then the MI is shown to be equivalent to the negative copula entropy. With this equivalence, the MI can be estimated by first estimating the empirical copula and then estimating the entropy of the empirical copula. Thus, the MI estimate is an estimation of the entropy, which reduces the complexity and computational requirements. Tests show that the method is more effective than the traditional method.</p></div>\",\"PeriodicalId\":60306,\"journal\":{\"name\":\"Tsinghua Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2011-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1007-0214(11)70008-6\",\"citationCount\":\"124\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tsinghua Science and Technology\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007021411700086\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007021411700086","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 124

摘要

互信息是信息论中的一个基本概念。因此,在大多数信息论应用中,MI的估计是非常重要的。本文提供了一种利用copula函数来理解和估计MI的新方法。首先,将联结函数的熵(称为联结熵)定义为联结函数所表示的依赖不确定性的度量,然后证明MI等价于负联结熵。利用这种等价性,可以通过先估计经验联结,然后估计经验联结的熵来估计MI。因此,MI估计是对熵的估计,这降低了复杂性和计算需求。实验表明,该方法比传统方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mutual Information Is Copula Entropy

Mutual information (MI) is a basic concept in information theory. Therefore, estimates of the MI are fundamentally important in most information theory applications. This paper provides a new way of understanding and estimating the MI using the copula function. First, the entropy of the copula, named the copula entropy, is defined as a measure of the dependence uncertainty represented by the copula function and then the MI is shown to be equivalent to the negative copula entropy. With this equivalence, the MI can be estimated by first estimating the empirical copula and then estimating the entropy of the empirical copula. Thus, the MI estimate is an estimation of the entropy, which reduces the complexity and computational requirements. Tests show that the method is more effective than the traditional method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.10
自引率
0.00%
发文量
2340
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信