一种基于神经网络的火灾探测方法*

IF 5.2 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Cheng Caixia (程彩霞) , Sun Fuchun (孙富春) , Zhou Xinquan (周心权)
{"title":"一种基于神经网络的火灾探测方法*","authors":"Cheng Caixia (程彩霞) ,&nbsp;Sun Fuchun (孙富春) ,&nbsp;Zhou Xinquan (周心权)","doi":"10.1016/S1007-0214(11)70005-0","DOIUrl":null,"url":null,"abstract":"<div><p>A neural network fire detection method was developed using detection information for temperature, smoke density, and CO concentration to determine the probability of three representative fire conditions. The method overcomes the shortcomings of domestic fire alarm systems using single sensor information. Test results show that the identification error rates for fires, smoldering fires, and no fire are less than 5%, which greatly reduces leak-check rates and false alarms. This neural network fire alarm system can fuse a variety of sensor data and improve the ability of systems to adapt in the environment and accurately predict fires, which has great significance for life and property safety.</p></div>","PeriodicalId":60306,"journal":{"name":"Tsinghua Science and Technology","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2011-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1007-0214(11)70005-0","citationCount":"42","resultStr":"{\"title\":\"One Fire Detection Method Using Neural Networks*\",\"authors\":\"Cheng Caixia (程彩霞) ,&nbsp;Sun Fuchun (孙富春) ,&nbsp;Zhou Xinquan (周心权)\",\"doi\":\"10.1016/S1007-0214(11)70005-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A neural network fire detection method was developed using detection information for temperature, smoke density, and CO concentration to determine the probability of three representative fire conditions. The method overcomes the shortcomings of domestic fire alarm systems using single sensor information. Test results show that the identification error rates for fires, smoldering fires, and no fire are less than 5%, which greatly reduces leak-check rates and false alarms. This neural network fire alarm system can fuse a variety of sensor data and improve the ability of systems to adapt in the environment and accurately predict fires, which has great significance for life and property safety.</p></div>\",\"PeriodicalId\":60306,\"journal\":{\"name\":\"Tsinghua Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2011-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1007-0214(11)70005-0\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tsinghua Science and Technology\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007021411700050\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007021411700050","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 42

摘要

利用温度、烟雾密度和CO浓度的探测信息,开发了一种神经网络火灾探测方法,以确定三种具有代表性的火灾条件的概率。该方法克服了国内火灾报警系统采用单一传感器信息的缺点。试验结果表明,该系统对火灾、阴燃和无火的识别错误率均小于5%,大大降低了漏检率和误报率。该神经网络火灾报警系统可以融合多种传感器数据,提高系统对环境的适应能力和准确预测火灾的能力,对生命财产安全具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
One Fire Detection Method Using Neural Networks*

A neural network fire detection method was developed using detection information for temperature, smoke density, and CO concentration to determine the probability of three representative fire conditions. The method overcomes the shortcomings of domestic fire alarm systems using single sensor information. Test results show that the identification error rates for fires, smoldering fires, and no fire are less than 5%, which greatly reduces leak-check rates and false alarms. This neural network fire alarm system can fuse a variety of sensor data and improve the ability of systems to adapt in the environment and accurately predict fires, which has great significance for life and property safety.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.10
自引率
0.00%
发文量
2340
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信