{"title":"一种基于神经网络的火灾探测方法*","authors":"Cheng Caixia (程彩霞) , Sun Fuchun (孙富春) , Zhou Xinquan (周心权)","doi":"10.1016/S1007-0214(11)70005-0","DOIUrl":null,"url":null,"abstract":"<div><p>A neural network fire detection method was developed using detection information for temperature, smoke density, and CO concentration to determine the probability of three representative fire conditions. The method overcomes the shortcomings of domestic fire alarm systems using single sensor information. Test results show that the identification error rates for fires, smoldering fires, and no fire are less than 5%, which greatly reduces leak-check rates and false alarms. This neural network fire alarm system can fuse a variety of sensor data and improve the ability of systems to adapt in the environment and accurately predict fires, which has great significance for life and property safety.</p></div>","PeriodicalId":60306,"journal":{"name":"Tsinghua Science and Technology","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2011-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1007-0214(11)70005-0","citationCount":"42","resultStr":"{\"title\":\"One Fire Detection Method Using Neural Networks*\",\"authors\":\"Cheng Caixia (程彩霞) , Sun Fuchun (孙富春) , Zhou Xinquan (周心权)\",\"doi\":\"10.1016/S1007-0214(11)70005-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A neural network fire detection method was developed using detection information for temperature, smoke density, and CO concentration to determine the probability of three representative fire conditions. The method overcomes the shortcomings of domestic fire alarm systems using single sensor information. Test results show that the identification error rates for fires, smoldering fires, and no fire are less than 5%, which greatly reduces leak-check rates and false alarms. This neural network fire alarm system can fuse a variety of sensor data and improve the ability of systems to adapt in the environment and accurately predict fires, which has great significance for life and property safety.</p></div>\",\"PeriodicalId\":60306,\"journal\":{\"name\":\"Tsinghua Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2011-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1007-0214(11)70005-0\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tsinghua Science and Technology\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007021411700050\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007021411700050","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A neural network fire detection method was developed using detection information for temperature, smoke density, and CO concentration to determine the probability of three representative fire conditions. The method overcomes the shortcomings of domestic fire alarm systems using single sensor information. Test results show that the identification error rates for fires, smoldering fires, and no fire are less than 5%, which greatly reduces leak-check rates and false alarms. This neural network fire alarm system can fuse a variety of sensor data and improve the ability of systems to adapt in the environment and accurately predict fires, which has great significance for life and property safety.