I. Nadir, Y. Achour, A. Kassimi, M. E. Himri, M. R. Laamari, M. Haddad
{"title":"水溶液中抗生素磺胺嘧啶的去除","authors":"I. Nadir, Y. Achour, A. Kassimi, M. E. Himri, M. R. Laamari, M. Haddad","doi":"10.22036/PCR.2020.249992.1839","DOIUrl":null,"url":null,"abstract":"The removal efficiency of Sulfamethazine as a representative antibiotic (SMT) on a new and eco-friendly activated carbon provided from watermelon seeds species as adsorbent has been studied in simple systems. Some experimental parameters, namely the pH, the amount of adsorbent and the contact time are studied. The results showed that the weak chemical bond (π-π EDA interaction) dominated the sorption of SMT to watermelon seeds. The present adsorbent played an important role in the sorption of SMT, leading to a higher sorption capacity onto watermelon seeds (90.78 mg/g). The solvent effect is been studied to show that the electron-donor-acceptor (EDA) interaction is the main adsorption mechanism of SMT antibiotic and that adsorption capacity increases with the increase of dipole moment of solvents. A kinetic study showed that the removal efficiency process followed the pseudo-second-order model and the Langmuir isotherm was the best model to fit and describe the phenomenon in the single system.","PeriodicalId":20084,"journal":{"name":"Physical Chemistry Research","volume":"9 1","pages":"165-180"},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Removal of Antibiotic Sulfamethazine from Aqueous Media\",\"authors\":\"I. Nadir, Y. Achour, A. Kassimi, M. E. Himri, M. R. Laamari, M. Haddad\",\"doi\":\"10.22036/PCR.2020.249992.1839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The removal efficiency of Sulfamethazine as a representative antibiotic (SMT) on a new and eco-friendly activated carbon provided from watermelon seeds species as adsorbent has been studied in simple systems. Some experimental parameters, namely the pH, the amount of adsorbent and the contact time are studied. The results showed that the weak chemical bond (π-π EDA interaction) dominated the sorption of SMT to watermelon seeds. The present adsorbent played an important role in the sorption of SMT, leading to a higher sorption capacity onto watermelon seeds (90.78 mg/g). The solvent effect is been studied to show that the electron-donor-acceptor (EDA) interaction is the main adsorption mechanism of SMT antibiotic and that adsorption capacity increases with the increase of dipole moment of solvents. A kinetic study showed that the removal efficiency process followed the pseudo-second-order model and the Langmuir isotherm was the best model to fit and describe the phenomenon in the single system.\",\"PeriodicalId\":20084,\"journal\":{\"name\":\"Physical Chemistry Research\",\"volume\":\"9 1\",\"pages\":\"165-180\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22036/PCR.2020.249992.1839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22036/PCR.2020.249992.1839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Removal of Antibiotic Sulfamethazine from Aqueous Media
The removal efficiency of Sulfamethazine as a representative antibiotic (SMT) on a new and eco-friendly activated carbon provided from watermelon seeds species as adsorbent has been studied in simple systems. Some experimental parameters, namely the pH, the amount of adsorbent and the contact time are studied. The results showed that the weak chemical bond (π-π EDA interaction) dominated the sorption of SMT to watermelon seeds. The present adsorbent played an important role in the sorption of SMT, leading to a higher sorption capacity onto watermelon seeds (90.78 mg/g). The solvent effect is been studied to show that the electron-donor-acceptor (EDA) interaction is the main adsorption mechanism of SMT antibiotic and that adsorption capacity increases with the increase of dipole moment of solvents. A kinetic study showed that the removal efficiency process followed the pseudo-second-order model and the Langmuir isotherm was the best model to fit and describe the phenomenon in the single system.
期刊介绍:
The motivation for this new journal is the tremendous increasing of useful articles in the field of Physical Chemistry and the related subjects in recent years, and the need of communication between Physical Chemists, Physicists and Biophysicists. We attempt to establish this fruitful communication and quick publication. High quality original papers in English dealing with experimental, theoretical and applied research related to physics and chemistry are welcomed. This journal accepts your report for publication as a regular article, review, and Letter. Review articles discussing specific areas of physical chemistry of current chemical or physical importance are also published. Subjects of Interest: Thermodynamics, Statistical Mechanics, Statistical Thermodynamics, Molecular Spectroscopy, Quantum Chemistry, Computational Chemistry, Physical Chemistry of Life Sciences, Surface Chemistry, Catalysis, Physical Chemistry of Electrochemistry, Kinetics, Nanochemistry and Nanophysics, Liquid Crystals, Ionic Liquid, Photochemistry, Experimental article of Physical chemistry. Mathematical Chemistry.