U. S, G. P., A. Manimaran, S. Parasuraman, T. Karthika, Selciya Selvan, D. Kumutha
{"title":"混合动力汽车动力传动系统能量转换设计与分析","authors":"U. S, G. P., A. Manimaran, S. Parasuraman, T. Karthika, Selciya Selvan, D. Kumutha","doi":"10.21272/jnep.15(3).03008","DOIUrl":null,"url":null,"abstract":"The electrified powertrain is the essential component of all these electric car systems. With the help of our power semiconductor products and intelligent control ICs, it is possible to optimize many targets simultaneously for lower system costs, higher power densities, more effective applications, and modular systems. A hybrid electric vehicle (HEV) is modeled and simulated using the MATLAB – Simulink environment in current research. A discussion of the most popular structures for realizing HEVs is suggested. An electric power motor, electronic power converters, and devices for energy storage are routinely given as part of several modeling processes. The most significant electrical and mechanical modeling results that defined the HEVs are given. This modeling approach is highly beneficial and appropriate for explaining power and automotive electronics. In this research article, the design goal is to offer efficient throttle movement, 0 % steady-state speed error, and to maintain a Selected Vehicle (SV) speed. Comparison research is conducted to determine the superiority of the optimal control approach to enhance fuel economy, decrease pollution, maximize driving safety, and lower manufacturing costs. The maximum power proposed in the hybrid electric vehicle train is 35,000 Watts, higher compared to the existing system of 32,000 Watts.","PeriodicalId":16654,"journal":{"name":"Journal of Nano-and electronic Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Analysis of Energy Transition in Hybrid Electric Vehicle Power Train Systems\",\"authors\":\"U. S, G. P., A. Manimaran, S. Parasuraman, T. Karthika, Selciya Selvan, D. Kumutha\",\"doi\":\"10.21272/jnep.15(3).03008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electrified powertrain is the essential component of all these electric car systems. With the help of our power semiconductor products and intelligent control ICs, it is possible to optimize many targets simultaneously for lower system costs, higher power densities, more effective applications, and modular systems. A hybrid electric vehicle (HEV) is modeled and simulated using the MATLAB – Simulink environment in current research. A discussion of the most popular structures for realizing HEVs is suggested. An electric power motor, electronic power converters, and devices for energy storage are routinely given as part of several modeling processes. The most significant electrical and mechanical modeling results that defined the HEVs are given. This modeling approach is highly beneficial and appropriate for explaining power and automotive electronics. In this research article, the design goal is to offer efficient throttle movement, 0 % steady-state speed error, and to maintain a Selected Vehicle (SV) speed. Comparison research is conducted to determine the superiority of the optimal control approach to enhance fuel economy, decrease pollution, maximize driving safety, and lower manufacturing costs. The maximum power proposed in the hybrid electric vehicle train is 35,000 Watts, higher compared to the existing system of 32,000 Watts.\",\"PeriodicalId\":16654,\"journal\":{\"name\":\"Journal of Nano-and electronic Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nano-and electronic Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21272/jnep.15(3).03008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano-and electronic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21272/jnep.15(3).03008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Design and Analysis of Energy Transition in Hybrid Electric Vehicle Power Train Systems
The electrified powertrain is the essential component of all these electric car systems. With the help of our power semiconductor products and intelligent control ICs, it is possible to optimize many targets simultaneously for lower system costs, higher power densities, more effective applications, and modular systems. A hybrid electric vehicle (HEV) is modeled and simulated using the MATLAB – Simulink environment in current research. A discussion of the most popular structures for realizing HEVs is suggested. An electric power motor, electronic power converters, and devices for energy storage are routinely given as part of several modeling processes. The most significant electrical and mechanical modeling results that defined the HEVs are given. This modeling approach is highly beneficial and appropriate for explaining power and automotive electronics. In this research article, the design goal is to offer efficient throttle movement, 0 % steady-state speed error, and to maintain a Selected Vehicle (SV) speed. Comparison research is conducted to determine the superiority of the optimal control approach to enhance fuel economy, decrease pollution, maximize driving safety, and lower manufacturing costs. The maximum power proposed in the hybrid electric vehicle train is 35,000 Watts, higher compared to the existing system of 32,000 Watts.