{"title":"苯基亚氨基二乙酸接枝多壁碳纳米管对样品水中锌(II)的预富集","authors":"A. Moghimi","doi":"10.22034/JCHR.2018.544002","DOIUrl":null,"url":null,"abstract":": phenyl-iminodiacetic acid grafted multiwalled carbon nanotubes were prepared by grafted phenyl-iminodiacetic acid groups onto multi-walled carbon nanotubes via a diazotation reaction. The stability of chemically phenyl-iminodiacetic acid grafted multiwalled carbon nanotubes in concentrated hydrochloric acid which was then used as a recycling and pre-concentration reagent for further uses of phenyl-iminodiacetic acid grafted multiwalled carbon nanotubes. The application of this phenyl-iminodiacetic acid grafted multiwalled carbon nanotubes for sorption of a series of metal ions was performed by using different controlling factors such as the pH of metal ion solution and the equilibration shaking time by the static technique. Zn(II) was found to exhibit the highest affinity towards extraction by these phenyl-iminodiacetic acid grafted multiwalled carbon nanotubes phases. The pronounced selectivity was also confirmed from the determined distribution coefficient ( K d ) of all the metal ions, showing the highest value reported for Zn(II) to occur by phenyl-iminodiacetic acid grafted multiwalled carbon nanotubes. The potential applications of phenyl-iminodiacetic acid grafted multiwalled carbon nanotubes for selective extraction of Zn(II) to occur from aqueous solution were successfully accomplished as well as pre- concentration of low concentration of Zn(II) (60 pg ml -1 ) from natural tap water with a pre-concentration factor of 100 for Zn(II) off-line analysis by flame atomic absorption analysis.","PeriodicalId":15347,"journal":{"name":"Journal of Chemical Health Risks","volume":"19 1","pages":"21-27"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preconcentration of Zn(II) from Sample Water by Phenyl-iminodiacetic Acid Grafted Multiwalled Carbon Nanotubes\",\"authors\":\"A. Moghimi\",\"doi\":\"10.22034/JCHR.2018.544002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": phenyl-iminodiacetic acid grafted multiwalled carbon nanotubes were prepared by grafted phenyl-iminodiacetic acid groups onto multi-walled carbon nanotubes via a diazotation reaction. The stability of chemically phenyl-iminodiacetic acid grafted multiwalled carbon nanotubes in concentrated hydrochloric acid which was then used as a recycling and pre-concentration reagent for further uses of phenyl-iminodiacetic acid grafted multiwalled carbon nanotubes. The application of this phenyl-iminodiacetic acid grafted multiwalled carbon nanotubes for sorption of a series of metal ions was performed by using different controlling factors such as the pH of metal ion solution and the equilibration shaking time by the static technique. Zn(II) was found to exhibit the highest affinity towards extraction by these phenyl-iminodiacetic acid grafted multiwalled carbon nanotubes phases. The pronounced selectivity was also confirmed from the determined distribution coefficient ( K d ) of all the metal ions, showing the highest value reported for Zn(II) to occur by phenyl-iminodiacetic acid grafted multiwalled carbon nanotubes. The potential applications of phenyl-iminodiacetic acid grafted multiwalled carbon nanotubes for selective extraction of Zn(II) to occur from aqueous solution were successfully accomplished as well as pre- concentration of low concentration of Zn(II) (60 pg ml -1 ) from natural tap water with a pre-concentration factor of 100 for Zn(II) off-line analysis by flame atomic absorption analysis.\",\"PeriodicalId\":15347,\"journal\":{\"name\":\"Journal of Chemical Health Risks\",\"volume\":\"19 1\",\"pages\":\"21-27\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Health Risks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/JCHR.2018.544002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Health Risks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/JCHR.2018.544002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
摘要
:通过重氮反应将苯基亚氨基二乙酸接枝到多壁碳纳米管上,制备了苯基亚氨基二乙酸接枝多壁碳纳米管。研究了化学上苯基亚氨基二乙酸接枝多壁碳纳米管在浓盐酸中的稳定性,并将浓盐酸作为进一步利用苯基亚氨基二乙酸接枝多壁碳纳米管的回收和预富集试剂。通过对金属离子溶液的pH值和平衡振荡时间的不同控制因素,采用静态技术研究了该多壁碳纳米管对一系列金属离子的吸附。结果表明,锌(II)在苯亚氨基二乙酸接枝的多壁碳纳米管相中具有最高的萃取亲和力。各金属离子的分布系数(K d)也证实了其显著的选择性,表明苯基亚氨基二乙酸接枝的多壁碳纳米管对Zn(II)的选择性最高。成功地实现了苯基亚氨基二乙酸接枝多壁碳纳米管在水溶液中选择性提取Zn(II)的潜在应用,以及从天然自来水中预浓缩低浓度Zn(II) (60 pg ml -1),预浓缩系数为100,用于火焰原子吸收分析Zn(II)的离线分析。
Preconcentration of Zn(II) from Sample Water by Phenyl-iminodiacetic Acid Grafted Multiwalled Carbon Nanotubes
: phenyl-iminodiacetic acid grafted multiwalled carbon nanotubes were prepared by grafted phenyl-iminodiacetic acid groups onto multi-walled carbon nanotubes via a diazotation reaction. The stability of chemically phenyl-iminodiacetic acid grafted multiwalled carbon nanotubes in concentrated hydrochloric acid which was then used as a recycling and pre-concentration reagent for further uses of phenyl-iminodiacetic acid grafted multiwalled carbon nanotubes. The application of this phenyl-iminodiacetic acid grafted multiwalled carbon nanotubes for sorption of a series of metal ions was performed by using different controlling factors such as the pH of metal ion solution and the equilibration shaking time by the static technique. Zn(II) was found to exhibit the highest affinity towards extraction by these phenyl-iminodiacetic acid grafted multiwalled carbon nanotubes phases. The pronounced selectivity was also confirmed from the determined distribution coefficient ( K d ) of all the metal ions, showing the highest value reported for Zn(II) to occur by phenyl-iminodiacetic acid grafted multiwalled carbon nanotubes. The potential applications of phenyl-iminodiacetic acid grafted multiwalled carbon nanotubes for selective extraction of Zn(II) to occur from aqueous solution were successfully accomplished as well as pre- concentration of low concentration of Zn(II) (60 pg ml -1 ) from natural tap water with a pre-concentration factor of 100 for Zn(II) off-line analysis by flame atomic absorption analysis.