Tiago Mück;Bryan Donyanavard;Kasra Moazzemi;Amir M. Rahmani;Axel Jantsch;Nikil Dutt
{"title":"异构多核响应和鲁棒MIMO控制的设计方法","authors":"Tiago Mück;Bryan Donyanavard;Kasra Moazzemi;Amir M. Rahmani;Axel Jantsch;Nikil Dutt","doi":"10.1109/TMSCS.2018.2808524","DOIUrl":null,"url":null,"abstract":"Heterogeneous multicore processors (HMPs) are commonly deployed to meet the performance and power requirements of emerging workloads. HMPs demand adaptive and coordinated resource management techniques to control such complex systems. While Multiple-Input-Multiple-Output (MIMO) control theory has been applied to adaptively coordinate resources for \n<italic>single-core</i>\n processors, the coordinated management of HMPs poses significant additional challenges for achieving robustness and responsiveness, due to the unmanageable complexity of modeling the system dynamics. This paper presents, for the first time, a methodology to design robust MIMO controllers with rapid response and formal guarantees for coordinated management of HMPs. Our approach addresses the challenges of: (1) system decomposition and identification; (2) selection of suitable sensor and actuator granularity; and (3) appropriate system modeling to make the system identifiable as well as controllable. We demonstrate the practical applicability of our approach on an ARM big.LITTLE HMP platform running Linux, and demonstrate the efficiency and robustness of our method by designing MIMO-based resource managers.","PeriodicalId":100643,"journal":{"name":"IEEE Transactions on Multi-Scale Computing Systems","volume":"4 4","pages":"944-951"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TMSCS.2018.2808524","citationCount":"9","resultStr":"{\"title\":\"Design Methodology for Responsive and Rrobust MIMO Control of Heterogeneous Multicores\",\"authors\":\"Tiago Mück;Bryan Donyanavard;Kasra Moazzemi;Amir M. Rahmani;Axel Jantsch;Nikil Dutt\",\"doi\":\"10.1109/TMSCS.2018.2808524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heterogeneous multicore processors (HMPs) are commonly deployed to meet the performance and power requirements of emerging workloads. HMPs demand adaptive and coordinated resource management techniques to control such complex systems. While Multiple-Input-Multiple-Output (MIMO) control theory has been applied to adaptively coordinate resources for \\n<italic>single-core</i>\\n processors, the coordinated management of HMPs poses significant additional challenges for achieving robustness and responsiveness, due to the unmanageable complexity of modeling the system dynamics. This paper presents, for the first time, a methodology to design robust MIMO controllers with rapid response and formal guarantees for coordinated management of HMPs. Our approach addresses the challenges of: (1) system decomposition and identification; (2) selection of suitable sensor and actuator granularity; and (3) appropriate system modeling to make the system identifiable as well as controllable. We demonstrate the practical applicability of our approach on an ARM big.LITTLE HMP platform running Linux, and demonstrate the efficiency and robustness of our method by designing MIMO-based resource managers.\",\"PeriodicalId\":100643,\"journal\":{\"name\":\"IEEE Transactions on Multi-Scale Computing Systems\",\"volume\":\"4 4\",\"pages\":\"944-951\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TMSCS.2018.2808524\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multi-Scale Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/8302938/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multi-Scale Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/8302938/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design Methodology for Responsive and Rrobust MIMO Control of Heterogeneous Multicores
Heterogeneous multicore processors (HMPs) are commonly deployed to meet the performance and power requirements of emerging workloads. HMPs demand adaptive and coordinated resource management techniques to control such complex systems. While Multiple-Input-Multiple-Output (MIMO) control theory has been applied to adaptively coordinate resources for
single-core
processors, the coordinated management of HMPs poses significant additional challenges for achieving robustness and responsiveness, due to the unmanageable complexity of modeling the system dynamics. This paper presents, for the first time, a methodology to design robust MIMO controllers with rapid response and formal guarantees for coordinated management of HMPs. Our approach addresses the challenges of: (1) system decomposition and identification; (2) selection of suitable sensor and actuator granularity; and (3) appropriate system modeling to make the system identifiable as well as controllable. We demonstrate the practical applicability of our approach on an ARM big.LITTLE HMP platform running Linux, and demonstrate the efficiency and robustness of our method by designing MIMO-based resource managers.