融合步态感知的多模式自适应身份识别算法

IF 7.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Changjie Wang;Zhihua Li;Benjamin Sarpong
{"title":"融合步态感知的多模式自适应身份识别算法","authors":"Changjie Wang;Zhihua Li;Benjamin Sarpong","doi":"10.26599/BDMA.2021.9020006","DOIUrl":null,"url":null,"abstract":"Identity-recognition technologies require assistive equipment, whereas they are poor in recognition accuracy and expensive. To overcome this deficiency, this paper proposes several gait feature identification algorithms. First, in combination with the collected gait information of individuals from triaxial accelerometers on smartphones, the collected information is preprocessed, and multimodal fusion is used with the existing standard datasets to yield a multimodal synthetic dataset; then, with the multimodal characteristics of the collected biological gait information, a Convolutional Neural Network based Gait Recognition (CNN-GR) model and the related scheme for the multimodal features are developed; at last, regarding the proposed CNN-GR model and scheme, a unimodal gait feature identity single-gait feature identification algorithm and a multimodal gait feature fusion identity multimodal gait information algorithm are proposed. Experimental results show that the proposed algorithms perform well in recognition accuracy, the confusion matrix, and the kappa statistic, and they have better recognition scores and robustness than the compared algorithms; thus, the proposed algorithm has prominent promise in practice.","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"4 4","pages":"223-232"},"PeriodicalIF":7.7000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8254253/9523493/09523496.pdf","citationCount":"9","resultStr":"{\"title\":\"Multimodal adaptive identity-recognition algorithm fused with gait perception\",\"authors\":\"Changjie Wang;Zhihua Li;Benjamin Sarpong\",\"doi\":\"10.26599/BDMA.2021.9020006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identity-recognition technologies require assistive equipment, whereas they are poor in recognition accuracy and expensive. To overcome this deficiency, this paper proposes several gait feature identification algorithms. First, in combination with the collected gait information of individuals from triaxial accelerometers on smartphones, the collected information is preprocessed, and multimodal fusion is used with the existing standard datasets to yield a multimodal synthetic dataset; then, with the multimodal characteristics of the collected biological gait information, a Convolutional Neural Network based Gait Recognition (CNN-GR) model and the related scheme for the multimodal features are developed; at last, regarding the proposed CNN-GR model and scheme, a unimodal gait feature identity single-gait feature identification algorithm and a multimodal gait feature fusion identity multimodal gait information algorithm are proposed. Experimental results show that the proposed algorithms perform well in recognition accuracy, the confusion matrix, and the kappa statistic, and they have better recognition scores and robustness than the compared algorithms; thus, the proposed algorithm has prominent promise in practice.\",\"PeriodicalId\":52355,\"journal\":{\"name\":\"Big Data Mining and Analytics\",\"volume\":\"4 4\",\"pages\":\"223-232\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2021-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8254253/9523493/09523496.pdf\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data Mining and Analytics\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9523496/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Mining and Analytics","FirstCategoryId":"1093","ListUrlMain":"https://ieeexplore.ieee.org/document/9523496/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 9

摘要

身份识别技术需要辅助设备,但识别精度低且价格昂贵。为了克服这一不足,本文提出了几种步态特征识别算法。首先,结合智能手机上三轴加速度计采集的个体步态信息,对采集的信息进行预处理,并将多模态融合与现有标准数据集相结合,生成多模态合成数据集;然后,根据采集到的生物步态信息的多模式特征,建立了基于卷积神经网络的步态识别(CNN-GR)模型和多模式特征的相关方案;最后,针对所提出的CNN-GR模型和方案,提出了一种单模态步态特征识别算法和多模态步态特征融合识别多模态步态信息算法。实验结果表明,所提出的算法在识别精度、混淆矩阵和kappa统计量方面都表现良好,并且比比较算法具有更好的识别分数和鲁棒性;因此,该算法在实际应用中具有突出的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal adaptive identity-recognition algorithm fused with gait perception
Identity-recognition technologies require assistive equipment, whereas they are poor in recognition accuracy and expensive. To overcome this deficiency, this paper proposes several gait feature identification algorithms. First, in combination with the collected gait information of individuals from triaxial accelerometers on smartphones, the collected information is preprocessed, and multimodal fusion is used with the existing standard datasets to yield a multimodal synthetic dataset; then, with the multimodal characteristics of the collected biological gait information, a Convolutional Neural Network based Gait Recognition (CNN-GR) model and the related scheme for the multimodal features are developed; at last, regarding the proposed CNN-GR model and scheme, a unimodal gait feature identity single-gait feature identification algorithm and a multimodal gait feature fusion identity multimodal gait information algorithm are proposed. Experimental results show that the proposed algorithms perform well in recognition accuracy, the confusion matrix, and the kappa statistic, and they have better recognition scores and robustness than the compared algorithms; thus, the proposed algorithm has prominent promise in practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Big Data Mining and Analytics
Big Data Mining and Analytics Computer Science-Computer Science Applications
CiteScore
20.90
自引率
2.20%
发文量
84
期刊介绍: Big Data Mining and Analytics, a publication by Tsinghua University Press, presents groundbreaking research in the field of big data research and its applications. This comprehensive book delves into the exploration and analysis of vast amounts of data from diverse sources to uncover hidden patterns, correlations, insights, and knowledge. Featuring the latest developments, research issues, and solutions, this book offers valuable insights into the world of big data. It provides a deep understanding of data mining techniques, data analytics, and their practical applications. Big Data Mining and Analytics has gained significant recognition and is indexed and abstracted in esteemed platforms such as ESCI, EI, Scopus, DBLP Computer Science, Google Scholar, INSPEC, CSCD, DOAJ, CNKI, and more. With its wealth of information and its ability to transform the way we perceive and utilize data, this book is a must-read for researchers, professionals, and anyone interested in the field of big data analytics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信