{"title":"从住户调查数据估计时薪分布:利用缺失数据方法处理测量误差","authors":"G. Beissel-Durrant, C. Skinner","doi":"10.1920/WP.CEM.2003.1203","DOIUrl":null,"url":null,"abstract":"Measurement errors in survey data on hourly pay may lead to serious upward bias in low pay estimates. We consider how to correct for this bias when auxiliary accurately measured data are available for a subsample. An application to the UK Labour Force Survey is described. The use of fractional imputation, nearest neighbour imputation, predictive mean matching and propensity score weighting are considered. Properties of point estimators are compared both theoretically and by simulation. A fractional predictive mean matching imputation approach is advocated. It performs similarly to propensity score weighting, but displays slight advantages of robustness and efficiency.","PeriodicalId":51191,"journal":{"name":"Survey Methodology","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2003-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Estimation of the Distribution of Hourly Pay from Household Survey Data: The Use of Missing Data Methods to Handle Measurement Error\",\"authors\":\"G. Beissel-Durrant, C. Skinner\",\"doi\":\"10.1920/WP.CEM.2003.1203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Measurement errors in survey data on hourly pay may lead to serious upward bias in low pay estimates. We consider how to correct for this bias when auxiliary accurately measured data are available for a subsample. An application to the UK Labour Force Survey is described. The use of fractional imputation, nearest neighbour imputation, predictive mean matching and propensity score weighting are considered. Properties of point estimators are compared both theoretically and by simulation. A fractional predictive mean matching imputation approach is advocated. It performs similarly to propensity score weighting, but displays slight advantages of robustness and efficiency.\",\"PeriodicalId\":51191,\"journal\":{\"name\":\"Survey Methodology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2003-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Survey Methodology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1920/WP.CEM.2003.1203\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Survey Methodology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1920/WP.CEM.2003.1203","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
Estimation of the Distribution of Hourly Pay from Household Survey Data: The Use of Missing Data Methods to Handle Measurement Error
Measurement errors in survey data on hourly pay may lead to serious upward bias in low pay estimates. We consider how to correct for this bias when auxiliary accurately measured data are available for a subsample. An application to the UK Labour Force Survey is described. The use of fractional imputation, nearest neighbour imputation, predictive mean matching and propensity score weighting are considered. Properties of point estimators are compared both theoretically and by simulation. A fractional predictive mean matching imputation approach is advocated. It performs similarly to propensity score weighting, but displays slight advantages of robustness and efficiency.
期刊介绍:
The journal publishes articles dealing with various aspects of statistical development relevant to a statistical agency, such as design issues in the context of practical constraints, use of different data sources and collection techniques, total survey error, survey evaluation, research in survey methodology, time series analysis, seasonal adjustment, demographic studies, data integration, estimation and data analysis methods, and general survey systems development. The emphasis is placed on the development and evaluation of specific methodologies as applied to data collection or the data themselves.