A. Donev, A. Nonaka, Yifei Sun, T. Fai, Alejandro L. Garcia, J. Bell
{"title":"扩散混合流体的低马赫数波动流体力学","authors":"A. Donev, A. Nonaka, Yifei Sun, T. Fai, Alejandro L. Garcia, J. Bell","doi":"10.2140/camcos.2014.9.47","DOIUrl":null,"url":null,"abstract":"We formulate low Mach number fluctuating hydrodynamic equations appropriate for modeling diffusive mixing in isothermal mixtures of fluids with different density and transport coefficients. These equations eliminate the fluctuations in pressure associated with the propagation of sound waves by replacing the equation of state with a local thermodynamic constraint. We demonstrate that the low Mach number model preserves the spatio-temporal spectrum of the slower diffusive fluctuations. We develop a strictly conservative finite-volume spatial discretization of the low Mach number fluctuating equations in both two and three dimensions and construct several explicit Runge-Kutta temporal integrators that strictly maintain the equation of state constraint. The resulting spatio-temporal discretization is second-order accurate deterministically and maintains fluctuation-dissipation balance in the linearized stochastic equations. We apply our algorithms to model the development of giant concentration fluctuations in the presence of concentration gradients, and investigate the validity of common simplifications such as neglecting the spatial non-homogeneity of density and transport properties. We perform simulations of diffusive mixing of two fluids of different densities in two dimensions and compare the results of low Mach number continuum simulations to hard-disk molecular dynamics simulations. Excellent agreement is observed between the particle and continuum simulations of giant fluctuations during time-dependent diffusive mixing.","PeriodicalId":49791,"journal":{"name":"Multiscale Modeling & Simulation","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2012-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/camcos.2014.9.47","citationCount":"51","resultStr":"{\"title\":\"Low Mach Number Fluctuating Hydrodynamics of Diffusively Mixing Fluids\",\"authors\":\"A. Donev, A. Nonaka, Yifei Sun, T. Fai, Alejandro L. Garcia, J. Bell\",\"doi\":\"10.2140/camcos.2014.9.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We formulate low Mach number fluctuating hydrodynamic equations appropriate for modeling diffusive mixing in isothermal mixtures of fluids with different density and transport coefficients. These equations eliminate the fluctuations in pressure associated with the propagation of sound waves by replacing the equation of state with a local thermodynamic constraint. We demonstrate that the low Mach number model preserves the spatio-temporal spectrum of the slower diffusive fluctuations. We develop a strictly conservative finite-volume spatial discretization of the low Mach number fluctuating equations in both two and three dimensions and construct several explicit Runge-Kutta temporal integrators that strictly maintain the equation of state constraint. The resulting spatio-temporal discretization is second-order accurate deterministically and maintains fluctuation-dissipation balance in the linearized stochastic equations. We apply our algorithms to model the development of giant concentration fluctuations in the presence of concentration gradients, and investigate the validity of common simplifications such as neglecting the spatial non-homogeneity of density and transport properties. We perform simulations of diffusive mixing of two fluids of different densities in two dimensions and compare the results of low Mach number continuum simulations to hard-disk molecular dynamics simulations. Excellent agreement is observed between the particle and continuum simulations of giant fluctuations during time-dependent diffusive mixing.\",\"PeriodicalId\":49791,\"journal\":{\"name\":\"Multiscale Modeling & Simulation\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2012-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/camcos.2014.9.47\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiscale Modeling & Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/camcos.2014.9.47\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Modeling & Simulation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/camcos.2014.9.47","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Low Mach Number Fluctuating Hydrodynamics of Diffusively Mixing Fluids
We formulate low Mach number fluctuating hydrodynamic equations appropriate for modeling diffusive mixing in isothermal mixtures of fluids with different density and transport coefficients. These equations eliminate the fluctuations in pressure associated with the propagation of sound waves by replacing the equation of state with a local thermodynamic constraint. We demonstrate that the low Mach number model preserves the spatio-temporal spectrum of the slower diffusive fluctuations. We develop a strictly conservative finite-volume spatial discretization of the low Mach number fluctuating equations in both two and three dimensions and construct several explicit Runge-Kutta temporal integrators that strictly maintain the equation of state constraint. The resulting spatio-temporal discretization is second-order accurate deterministically and maintains fluctuation-dissipation balance in the linearized stochastic equations. We apply our algorithms to model the development of giant concentration fluctuations in the presence of concentration gradients, and investigate the validity of common simplifications such as neglecting the spatial non-homogeneity of density and transport properties. We perform simulations of diffusive mixing of two fluids of different densities in two dimensions and compare the results of low Mach number continuum simulations to hard-disk molecular dynamics simulations. Excellent agreement is observed between the particle and continuum simulations of giant fluctuations during time-dependent diffusive mixing.
期刊介绍:
Centered around multiscale phenomena, Multiscale Modeling and Simulation (MMS) is an interdisciplinary journal focusing on the fundamental modeling and computational principles underlying various multiscale methods.
By its nature, multiscale modeling is highly interdisciplinary, with developments occurring independently across fields. A broad range of scientific and engineering problems involve multiple scales. Traditional monoscale approaches have proven to be inadequate, even with the largest supercomputers, because of the range of scales and the prohibitively large number of variables involved. Thus, there is a growing need to develop systematic modeling and simulation approaches for multiscale problems. MMS will provide a single broad, authoritative source for results in this area.