{"title":"非高斯多参数埃尔米特随机场二次变分的渐近性质","authors":"T. T. Diu Tran","doi":"10.19195/0208-4147.39.2.8","DOIUrl":null,"url":null,"abstract":"Let Zt q,H t∈[0,1]d denote a d-parameter Hermite random field of order q ≥ 1 and self-similarity parameter H = H₁, . . . ,Hd ∈ ½, 1d. This process is H-self-similar, has stationary increments and exhibits long-range dependence. Particular examples include fractional Brownian motion q = 1, d = 1, fractional Brownian sheet q = 1, d ≥ 2, the Rosenblatt process q = 2, d = 1 as well as the Rosenblatt sheet q = 2, d ≥ 2. For any q ≥ 2, d ≥ 1 and H ∈ ½, 1d we show in this paper that a proper renormalization of the quadratic variation of Zq,H converges in L2Ω to a standard d-parameter Rosenblatt random variable with self-similarity index H' = 1 + 2H − 2/q.","PeriodicalId":48996,"journal":{"name":"Probability and Mathematical Statistics-Poland","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2016-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic behavior for quadratic variations of non-Gaussian multiparameter Hermite random fields\",\"authors\":\"T. T. Diu Tran\",\"doi\":\"10.19195/0208-4147.39.2.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let Zt q,H t∈[0,1]d denote a d-parameter Hermite random field of order q ≥ 1 and self-similarity parameter H = H₁, . . . ,Hd ∈ ½, 1d. This process is H-self-similar, has stationary increments and exhibits long-range dependence. Particular examples include fractional Brownian motion q = 1, d = 1, fractional Brownian sheet q = 1, d ≥ 2, the Rosenblatt process q = 2, d = 1 as well as the Rosenblatt sheet q = 2, d ≥ 2. For any q ≥ 2, d ≥ 1 and H ∈ ½, 1d we show in this paper that a proper renormalization of the quadratic variation of Zq,H converges in L2Ω to a standard d-parameter Rosenblatt random variable with self-similarity index H' = 1 + 2H − 2/q.\",\"PeriodicalId\":48996,\"journal\":{\"name\":\"Probability and Mathematical Statistics-Poland\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2016-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability and Mathematical Statistics-Poland\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.19195/0208-4147.39.2.8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability and Mathematical Statistics-Poland","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.19195/0208-4147.39.2.8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Asymptotic behavior for quadratic variations of non-Gaussian multiparameter Hermite random fields
Let Zt q,H t∈[0,1]d denote a d-parameter Hermite random field of order q ≥ 1 and self-similarity parameter H = H₁, . . . ,Hd ∈ ½, 1d. This process is H-self-similar, has stationary increments and exhibits long-range dependence. Particular examples include fractional Brownian motion q = 1, d = 1, fractional Brownian sheet q = 1, d ≥ 2, the Rosenblatt process q = 2, d = 1 as well as the Rosenblatt sheet q = 2, d ≥ 2. For any q ≥ 2, d ≥ 1 and H ∈ ½, 1d we show in this paper that a proper renormalization of the quadratic variation of Zq,H converges in L2Ω to a standard d-parameter Rosenblatt random variable with self-similarity index H' = 1 + 2H − 2/q.
期刊介绍:
PROBABILITY AND MATHEMATICAL STATISTICS is published by the Kazimierz Urbanik Center for Probability and Mathematical Statistics, and is sponsored jointly by the Faculty of Mathematics and Computer Science of University of Wrocław and the Faculty of Pure and Applied Mathematics of Wrocław University of Science and Technology. The purpose of the journal is to publish original contributions to the theory of probability and mathematical statistics.