Atef Lechiheb, I. Nourdin, Guangqu Zheng, Ezedine Haouala
{"title":"随机振荡积分在长程依赖下的收敛性及其在均匀化中的应用","authors":"Atef Lechiheb, I. Nourdin, Guangqu Zheng, Ezedine Haouala","doi":"10.19195/0208-4147.38.2.2","DOIUrl":null,"url":null,"abstract":"This paper deals with the asymptotic behavior of random oscillatory integrals in the presence of long-range dependence. As a byproduct, we solve the corrector problem in random homogenization of onedimensional elliptic equations with highly oscillatory random coefficients displaying long-range dependence, by proving convergence to stochastic integrals with respect to Hermite processes.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Convergence of random oscillatory integrals in the presence of long-range dependence and application to homogenization\",\"authors\":\"Atef Lechiheb, I. Nourdin, Guangqu Zheng, Ezedine Haouala\",\"doi\":\"10.19195/0208-4147.38.2.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the asymptotic behavior of random oscillatory integrals in the presence of long-range dependence. As a byproduct, we solve the corrector problem in random homogenization of onedimensional elliptic equations with highly oscillatory random coefficients displaying long-range dependence, by proving convergence to stochastic integrals with respect to Hermite processes.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2016-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.19195/0208-4147.38.2.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.19195/0208-4147.38.2.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Convergence of random oscillatory integrals in the presence of long-range dependence and application to homogenization
This paper deals with the asymptotic behavior of random oscillatory integrals in the presence of long-range dependence. As a byproduct, we solve the corrector problem in random homogenization of onedimensional elliptic equations with highly oscillatory random coefficients displaying long-range dependence, by proving convergence to stochastic integrals with respect to Hermite processes.