{"title":"基于集成学习的工业物联网安全入侵检测模型","authors":"Mouaad Mohy-Eddine;Azidine Guezzaz;Said Benkirane;Mourade Azrour;Yousef Farhaoui","doi":"10.26599/BDMA.2022.9020032","DOIUrl":null,"url":null,"abstract":"Industrial Internet of Things (IIoT) represents the expansion of the Internet of Things (IoT) in industrial sectors. It is designed to implicate embedded technologies in manufacturing fields to enhance their operations. However, IIoT involves some security vulnerabilities that are more damaging than those of IoT. Accordingly, Intrusion Detection Systems (IDSs) have been developed to forestall inevitable harmful intrusions. IDSs survey the environment to identify intrusions in real time. This study designs an intrusion detection model exploiting feature engineering and machine learning for IIoT security. We combine Isolation Forest (IF) with Pearson's Correlation Coefficient (PCC) to reduce computational cost and prediction time. IF is exploited to detect and remove outliers from datasets. We apply PCC to choose the most appropriate features. PCC and IF are applied exchangeably (PCCIF and IFPCC). The Random Forest (RF) classifier is implemented to enhance IDS performances. For evaluation, we use the Bot-IoT and NF-UNSW-NB15-v2 datasets. RF-PCCIF and RF-IFPCC show noteworthy results with 99.98% and 99.99% Accuracy (ACC) and 6.18s and 6.25s prediction time on Bot-IoT, respectively. The two models also score 99.30% and 99.18% ACC and 6.71 s and 6.87s prediction time on NF-UNSW-NB15-v2, respectively. Results prove that our designed model has several advantages and higher performance than related models.","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"6 3","pages":"273-287"},"PeriodicalIF":7.7000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8254253/10097649/10097653.pdf","citationCount":"5","resultStr":"{\"title\":\"An Ensemble Learning Based Intrusion Detection Model for Industrial IoT Security\",\"authors\":\"Mouaad Mohy-Eddine;Azidine Guezzaz;Said Benkirane;Mourade Azrour;Yousef Farhaoui\",\"doi\":\"10.26599/BDMA.2022.9020032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Industrial Internet of Things (IIoT) represents the expansion of the Internet of Things (IoT) in industrial sectors. It is designed to implicate embedded technologies in manufacturing fields to enhance their operations. However, IIoT involves some security vulnerabilities that are more damaging than those of IoT. Accordingly, Intrusion Detection Systems (IDSs) have been developed to forestall inevitable harmful intrusions. IDSs survey the environment to identify intrusions in real time. This study designs an intrusion detection model exploiting feature engineering and machine learning for IIoT security. We combine Isolation Forest (IF) with Pearson's Correlation Coefficient (PCC) to reduce computational cost and prediction time. IF is exploited to detect and remove outliers from datasets. We apply PCC to choose the most appropriate features. PCC and IF are applied exchangeably (PCCIF and IFPCC). The Random Forest (RF) classifier is implemented to enhance IDS performances. For evaluation, we use the Bot-IoT and NF-UNSW-NB15-v2 datasets. RF-PCCIF and RF-IFPCC show noteworthy results with 99.98% and 99.99% Accuracy (ACC) and 6.18s and 6.25s prediction time on Bot-IoT, respectively. The two models also score 99.30% and 99.18% ACC and 6.71 s and 6.87s prediction time on NF-UNSW-NB15-v2, respectively. Results prove that our designed model has several advantages and higher performance than related models.\",\"PeriodicalId\":52355,\"journal\":{\"name\":\"Big Data Mining and Analytics\",\"volume\":\"6 3\",\"pages\":\"273-287\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2023-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8254253/10097649/10097653.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data Mining and Analytics\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10097653/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Mining and Analytics","FirstCategoryId":"1093","ListUrlMain":"https://ieeexplore.ieee.org/document/10097653/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
An Ensemble Learning Based Intrusion Detection Model for Industrial IoT Security
Industrial Internet of Things (IIoT) represents the expansion of the Internet of Things (IoT) in industrial sectors. It is designed to implicate embedded technologies in manufacturing fields to enhance their operations. However, IIoT involves some security vulnerabilities that are more damaging than those of IoT. Accordingly, Intrusion Detection Systems (IDSs) have been developed to forestall inevitable harmful intrusions. IDSs survey the environment to identify intrusions in real time. This study designs an intrusion detection model exploiting feature engineering and machine learning for IIoT security. We combine Isolation Forest (IF) with Pearson's Correlation Coefficient (PCC) to reduce computational cost and prediction time. IF is exploited to detect and remove outliers from datasets. We apply PCC to choose the most appropriate features. PCC and IF are applied exchangeably (PCCIF and IFPCC). The Random Forest (RF) classifier is implemented to enhance IDS performances. For evaluation, we use the Bot-IoT and NF-UNSW-NB15-v2 datasets. RF-PCCIF and RF-IFPCC show noteworthy results with 99.98% and 99.99% Accuracy (ACC) and 6.18s and 6.25s prediction time on Bot-IoT, respectively. The two models also score 99.30% and 99.18% ACC and 6.71 s and 6.87s prediction time on NF-UNSW-NB15-v2, respectively. Results prove that our designed model has several advantages and higher performance than related models.
期刊介绍:
Big Data Mining and Analytics, a publication by Tsinghua University Press, presents groundbreaking research in the field of big data research and its applications. This comprehensive book delves into the exploration and analysis of vast amounts of data from diverse sources to uncover hidden patterns, correlations, insights, and knowledge.
Featuring the latest developments, research issues, and solutions, this book offers valuable insights into the world of big data. It provides a deep understanding of data mining techniques, data analytics, and their practical applications.
Big Data Mining and Analytics has gained significant recognition and is indexed and abstracted in esteemed platforms such as ESCI, EI, Scopus, DBLP Computer Science, Google Scholar, INSPEC, CSCD, DOAJ, CNKI, and more.
With its wealth of information and its ability to transform the way we perceive and utilize data, this book is a must-read for researchers, professionals, and anyone interested in the field of big data analytics.