强化学习中离散化性能的上界:研究文章

Q3 Social Sciences
Michael Mitchley
{"title":"强化学习中离散化性能的上界:研究文章","authors":"Michael Mitchley","doi":"10.18489/SACJ.V0I57.284","DOIUrl":null,"url":null,"abstract":"Reinforcement learning is a machine learning framework whereby an agent learns to perform a task by maximising its total reward received for selecting actions in each state. The policy mapping states to actions that the agent learns is either represented explicitly, or implicitly through a value function. It is common in reinforcement learning to discretise a continuous state space using tile coding or binary features. We prove an upper bound on the performance of discretisation for direct policy representation or value function approximation.","PeriodicalId":55859,"journal":{"name":"South African Computer Journal","volume":"57 1","pages":"24-31"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upper bounds on the performance of discretisation in reinforcement learning : research article\",\"authors\":\"Michael Mitchley\",\"doi\":\"10.18489/SACJ.V0I57.284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reinforcement learning is a machine learning framework whereby an agent learns to perform a task by maximising its total reward received for selecting actions in each state. The policy mapping states to actions that the agent learns is either represented explicitly, or implicitly through a value function. It is common in reinforcement learning to discretise a continuous state space using tile coding or binary features. We prove an upper bound on the performance of discretisation for direct policy representation or value function approximation.\",\"PeriodicalId\":55859,\"journal\":{\"name\":\"South African Computer Journal\",\"volume\":\"57 1\",\"pages\":\"24-31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"South African Computer Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18489/SACJ.V0I57.284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Computer Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18489/SACJ.V0I57.284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

强化学习是一种机器学习框架,智能体通过最大化在每个状态下选择行动所获得的总奖励来学习执行任务。将策略映射状态映射到代理学习的动作,通过值函数显式地或隐式地表示。在强化学习中,使用tile编码或二进制特征来离散连续状态空间是很常见的。我们证明了直接策略表示或值函数近似的离散化性能的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Upper bounds on the performance of discretisation in reinforcement learning : research article
Reinforcement learning is a machine learning framework whereby an agent learns to perform a task by maximising its total reward received for selecting actions in each state. The policy mapping states to actions that the agent learns is either represented explicitly, or implicitly through a value function. It is common in reinforcement learning to discretise a continuous state space using tile coding or binary features. We prove an upper bound on the performance of discretisation for direct policy representation or value function approximation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
South African Computer Journal
South African Computer Journal Social Sciences-Education
CiteScore
1.30
自引率
0.00%
发文量
10
审稿时长
24 weeks
期刊介绍: The South African Computer Journal is specialist ICT academic journal, accredited by the South African Department of Higher Education and Training SACJ publishes research articles, viewpoints and communications in English in Computer Science and Information Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信