Samer Elshehawi, P. Grundling, M. Gabriel, A. Grootjans, J. Plicht
{"title":"南非泥炭地:用放射性碳定年法回顾晚更新世-全新世的发展","authors":"Samer Elshehawi, P. Grundling, M. Gabriel, A. Grootjans, J. Plicht","doi":"10.19189/MAP.2018.KHR.329","DOIUrl":null,"url":null,"abstract":"South Africa has a limited number of peatlands and most of them are relatively small compared to those in cooler temperate regions in the northern hemisphere. We gathered 40 basal peat samples representative of South Africa’s peatlands to explore their development during the Late Pleistocene and Holocene. Depth profiles of nine of them were also investigated using radiocarbon dating, which yielded information on past environmental changes affecting South African peatlands. The data showed three peaks in the frequency of peatland initiation, which are consistent with available climatic and sea level fluctuation data: one after the Last Glacial Maximum (LGM) and two during the Mid to Late Holocene. Inland peatlands in mountain valleys showed optimal growing conditions during the glacial-interglacial transition, continuing until the Early-Holocene. This is due to the switch to the wet and warm interglacial climate. In contrast, coastal peatlands showed optimal initiation conditions over two phases during the Holocene, which is consistent with sea level rise peaks that led to optimal moist conditions occurring ca. 6,000–3,000 and 1,000 years ago. Sea level rise reduced groundwater drainage, which led to a rise in the primary groundwater table. However, data from some of the coastal peatlands indicate independence from the sea level fluctuation, and that they are rather controlled by climatic conditions and their local hydrogeomorphic setting, e.g. perched groundwater aquifers. Some peatland complexes show a pattern of phased initiation with peat initiation consistent with altitude difference, which could be due to a positive feedback of blocking caused by peat accumulation in lower reaches, reducing groundwater drainage to the sea.","PeriodicalId":48721,"journal":{"name":"Mires and Peat","volume":"24 1","pages":"1-14"},"PeriodicalIF":1.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"South African peatlands: A review of Late-Pleistocene-Holocene dvelopments using radiocarbon dating\",\"authors\":\"Samer Elshehawi, P. Grundling, M. Gabriel, A. Grootjans, J. Plicht\",\"doi\":\"10.19189/MAP.2018.KHR.329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"South Africa has a limited number of peatlands and most of them are relatively small compared to those in cooler temperate regions in the northern hemisphere. We gathered 40 basal peat samples representative of South Africa’s peatlands to explore their development during the Late Pleistocene and Holocene. Depth profiles of nine of them were also investigated using radiocarbon dating, which yielded information on past environmental changes affecting South African peatlands. The data showed three peaks in the frequency of peatland initiation, which are consistent with available climatic and sea level fluctuation data: one after the Last Glacial Maximum (LGM) and two during the Mid to Late Holocene. Inland peatlands in mountain valleys showed optimal growing conditions during the glacial-interglacial transition, continuing until the Early-Holocene. This is due to the switch to the wet and warm interglacial climate. In contrast, coastal peatlands showed optimal initiation conditions over two phases during the Holocene, which is consistent with sea level rise peaks that led to optimal moist conditions occurring ca. 6,000–3,000 and 1,000 years ago. Sea level rise reduced groundwater drainage, which led to a rise in the primary groundwater table. However, data from some of the coastal peatlands indicate independence from the sea level fluctuation, and that they are rather controlled by climatic conditions and their local hydrogeomorphic setting, e.g. perched groundwater aquifers. Some peatland complexes show a pattern of phased initiation with peat initiation consistent with altitude difference, which could be due to a positive feedback of blocking caused by peat accumulation in lower reaches, reducing groundwater drainage to the sea.\",\"PeriodicalId\":48721,\"journal\":{\"name\":\"Mires and Peat\",\"volume\":\"24 1\",\"pages\":\"1-14\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mires and Peat\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.19189/MAP.2018.KHR.329\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mires and Peat","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.19189/MAP.2018.KHR.329","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
South African peatlands: A review of Late-Pleistocene-Holocene dvelopments using radiocarbon dating
South Africa has a limited number of peatlands and most of them are relatively small compared to those in cooler temperate regions in the northern hemisphere. We gathered 40 basal peat samples representative of South Africa’s peatlands to explore their development during the Late Pleistocene and Holocene. Depth profiles of nine of them were also investigated using radiocarbon dating, which yielded information on past environmental changes affecting South African peatlands. The data showed three peaks in the frequency of peatland initiation, which are consistent with available climatic and sea level fluctuation data: one after the Last Glacial Maximum (LGM) and two during the Mid to Late Holocene. Inland peatlands in mountain valleys showed optimal growing conditions during the glacial-interglacial transition, continuing until the Early-Holocene. This is due to the switch to the wet and warm interglacial climate. In contrast, coastal peatlands showed optimal initiation conditions over two phases during the Holocene, which is consistent with sea level rise peaks that led to optimal moist conditions occurring ca. 6,000–3,000 and 1,000 years ago. Sea level rise reduced groundwater drainage, which led to a rise in the primary groundwater table. However, data from some of the coastal peatlands indicate independence from the sea level fluctuation, and that they are rather controlled by climatic conditions and their local hydrogeomorphic setting, e.g. perched groundwater aquifers. Some peatland complexes show a pattern of phased initiation with peat initiation consistent with altitude difference, which could be due to a positive feedback of blocking caused by peat accumulation in lower reaches, reducing groundwater drainage to the sea.
期刊介绍:
Mires and Peat is a peer-reviewed internet journal focusing specifically on mires, peatlands and peat. As a truly “free-to-users” publication (i.e. NO CHARGES to authors OR readers), it is immediately accessible to readers and potential authors worldwide. It is published jointly by the International Peatland Society (IPS) and the International Mire Conservation Group (IMCG).
Mires and Peat is indexed by Thomson Reuters Web of Science (2017 Impact Factors: 1.326 [two-year] and 1.638 [five-year]), Elsevier Scopus, EBSCO Environment Complete, CABI Abstracts, CSA Proquest (including their Aquatic Science and Fisheries Abstracts ASFA, Ecology, Entomology, Animal Behavior, Aqualine and Pollution databases) and Directory of Open Access Journals (DOAJ). Mires and Peat also participates in the CABI Full Text Repository, and subscribes to the Portico E-journal Preservation Service (LTPA).
Mires and Peat publishes high-quality research papers on all aspects of peatland science, technology and wise use, including:
ecology, hydrology, survey, inventory, classification, functions and values of mires and peatlands;
scientific, economic and human aspects of the management of peatlands for agriculture, forestry, nature conservation, environmental protection, peat extraction, industrial development and other purposes;
biological, physical and chemical characteristics of peat; and
climate change and peatlands.
Short communications and review articles on these and related topics will also be considered; and suggestions for special issues of the Journal based on the proceedings of conferences, seminars, symposia and workshops will be welcomed. The submission of material by authors and from countries whose work would otherwise be inaccessible to the international community is particularly encouraged.