求解可合分数阶偏微分方程的可合二重拉普拉斯变换方法

IF 1.1 Q2 MATHEMATICS, APPLIED
S. Alfaqeih, E. Mısırlı
{"title":"求解可合分数阶偏微分方程的可合二重拉普拉斯变换方法","authors":"S. Alfaqeih, E. Mısırlı","doi":"10.22034/CMDE.2020.38135.1678","DOIUrl":null,"url":null,"abstract":"In the present article, we utilize the Conformable Double Laplace Transform Method (CDLTM) to get the exact solutions of a wide class of Conformable fractional differential in mathematical physics. The results obtained show that the proposed method is efficient, reliable and easy to be implemented on related linear problems in applied mathematics and physics. Moreover, the (CDLTM) has a small computational size as compared to other methods.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Conformable Double Laplace Transform Method for Solving Conformable Fractional Partial Differential Equations\",\"authors\":\"S. Alfaqeih, E. Mısırlı\",\"doi\":\"10.22034/CMDE.2020.38135.1678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present article, we utilize the Conformable Double Laplace Transform Method (CDLTM) to get the exact solutions of a wide class of Conformable fractional differential in mathematical physics. The results obtained show that the proposed method is efficient, reliable and easy to be implemented on related linear problems in applied mathematics and physics. Moreover, the (CDLTM) has a small computational size as compared to other methods.\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2020.38135.1678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2020.38135.1678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

摘要

本文利用可合二重拉普拉斯变换方法(CDLTM)得到了数学物理中一类广泛的可合分数阶微分的精确解。结果表明,该方法有效、可靠,易于在应用数学和物理中的相关线性问题上实现。此外,与其他方法相比,(CDLTM)具有较小的计算量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conformable Double Laplace Transform Method for Solving Conformable Fractional Partial Differential Equations
In the present article, we utilize the Conformable Double Laplace Transform Method (CDLTM) to get the exact solutions of a wide class of Conformable fractional differential in mathematical physics. The results obtained show that the proposed method is efficient, reliable and easy to be implemented on related linear problems in applied mathematics and physics. Moreover, the (CDLTM) has a small computational size as compared to other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信