在空间有限元离散化上扩展一种新的两网格波形松弛

IF 1.1 Q2 MATHEMATICS, APPLIED
Noora Habibi, Ali Mesforush
{"title":"在空间有限元离散化上扩展一种新的两网格波形松弛","authors":"Noora Habibi, Ali Mesforush","doi":"10.22034/CMDE.2020.37349.1653","DOIUrl":null,"url":null,"abstract":"In this work, a new two-grid method presented for the elliptic partial differential equations is generalized to the time-dependent linear parabolic partial differential equations. The new two-grid waveform relaxation method uses the numerical method of lines, replacing any spatial derivative by a discrete formula, obtained here by the finite element method. A convergence analysis in terms of the spectral radius of the corresponding two-grid waveform relaxation operator is also developed. Moreover, the efficiency of the presented method and its analysis are tested, applying the two-dimensional heat equation.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extending a new two-grid waveform relaxation on a spatial finite element discretization\",\"authors\":\"Noora Habibi, Ali Mesforush\",\"doi\":\"10.22034/CMDE.2020.37349.1653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a new two-grid method presented for the elliptic partial differential equations is generalized to the time-dependent linear parabolic partial differential equations. The new two-grid waveform relaxation method uses the numerical method of lines, replacing any spatial derivative by a discrete formula, obtained here by the finite element method. A convergence analysis in terms of the spectral radius of the corresponding two-grid waveform relaxation operator is also developed. Moreover, the efficiency of the presented method and its analysis are tested, applying the two-dimensional heat equation.\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2020.37349.1653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2020.37349.1653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的求解椭圆型偏微分方程的双网格方法,并将其推广到时变线性抛物型偏微分方程。新的两网格波形松弛法采用线的数值方法,用有限元法得到的离散公式代替任何空间导数。根据相应的两网格波形松弛算子的谱半径进行了收敛性分析。此外,应用二维热方程验证了该方法及其分析的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extending a new two-grid waveform relaxation on a spatial finite element discretization
In this work, a new two-grid method presented for the elliptic partial differential equations is generalized to the time-dependent linear parabolic partial differential equations. The new two-grid waveform relaxation method uses the numerical method of lines, replacing any spatial derivative by a discrete formula, obtained here by the finite element method. A convergence analysis in terms of the spectral radius of the corresponding two-grid waveform relaxation operator is also developed. Moreover, the efficiency of the presented method and its analysis are tested, applying the two-dimensional heat equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信